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Abstract
This chapter provides a summary about the role of symmetries in the

construction of quantum TGD. The discussions are based on the general
vision that quantum states of the Universe correspond to the modes of
classical spinor fields in the ”world of the classical worlds” identified as
the infinite-dimensional configuration space of light-like 3-surfaces of H =
M4×CP2 (more or less-equivalently, the corresponding 4-surfaces defining
generalized Bohr orbits). The following topics are discussed on basis of
this vision.

1. Geometric ideas

TGD relies heavily on geometric ideas, which have gradually general-
ized during the years. Symmetries play a key role as one might expect on
basis of general definition of geometry as a structure characterized by a
given symmetry.

1.1 Physics as infinite-dimensional Kähler geometry

a) The basic idea is that it is possible to reduce quantum theory to
configuration space geometry and spinor structure. The geometrization
of loop spaces inspires the idea that the mere existence of Riemann con-
nection fixes configuration space Kähler geometry uniquely. Accordingly,
configuration space can be regarded as a union of infinite-dimensional
symmetric spaces labelled by zero modes labelling classical non-quantum
fluctuating degrees of freedom.

The huge symmetries of the configuration space geometry deriving
from the light-likeness of 3-surfaces and from the special conformal prop-
erties of the boundary of 4-D light-cone would guarantee the maximal
isometry group necessary for the symmetric space property. Quantum
criticality is the fundamental hypothesis allowing to fix the Kähler func-
tion and thus dynamics of TGD uniquely. Quantum criticality leads to
surprisingly strong predictions about the evolution of coupling constants.

b) Configuration space spinors correspond to Fock states and anti-
commutation relations for fermionic oscillator operators correspond to
anti-commutation relations for the gamma matrices of the configuration
space. Configuration space gamma matrices contracted with Killing vec-
tor fields give rise to a super-algebra which together with Hamiltonians of
the configuration space forms what I have used to called super-canonical
algebra.

Super-canonical degrees of freedom represent completely new degrees
of freedom and have no electroweak couplings. In the case of hadrons
super-canonical quanta correspond to what has been identified as non-
perturbative sector of QCD: they define TGD correlate for the degrees of
freedom assignable to hadronic strings. They are responsible for the most
of the mass of hadron and resolve spin puzzle of proton.

Besides super-canonical symmetries there are Super-Kac Moody sym-
metries assignable to light-like 3-surfaces and together these algebras ex-
tend the conformal symmetries of string models to dynamical conformal
symmetries instead of mere gauge symmetries. The construction of the
representations of these symmetries is one of the main challenges of quan-
tum TGD. Modular invariance is one aspect of conformal symmetries and
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plays a key role in the understanding of elementary particle vacuum func-
tionals and the description of family replication phenomenon in terms of
the topology of partonic 2-surfaces.

c) Configuration space spinors define a von Neumann algebra known
as hyper-finite factor of type II1 (HFFs). This realization has led also to
a profound generalization of quantum TGD through a generalization of
the notion of imbedding space to characterize quantum criticality. The
resulting space has a book like structure with various almost-copies of
imbedding space representing the pages of the book meeting at quantum
critical sub-manifolds. The outcome of this approach is that the exponents
of Kähler function and Chern-Simons action are not fundamental objects
but reduce to the Dirac determinant associated with the modified Dirac
operator assigned to the light-like 3-surfaces.

1.2 p-adic physics and p-adic variants of basic symmetries

p-Adic mass calculations relying on p-adic length scale hypothesis
led to an understanding of elementary particle masses using only super-
conformal symmetries and p-adic thermodynamics. The need to fuse real
physics and various p-adic physics to single coherent whole led to a gener-
alization of the notion of number obtained by gluing together reals and p-
adics together along common rationals and algebraics. The interpretation
of p-adic space-time sheets is as correlates for cognition and intentional-
ity. p-Adic and real space-time sheets intersect along common rationals
and algebraics and the subset of these points defines what I call number
theoretic braid in terms of which both configuration space geometry and
S-matrix elements should be expressible. Thus one would obtain number
theoretical discretization which involves no adhoc elements and is inherent
to the physics of TGD.

1.3. Hierarchy of Planck constants and dark matter hierarchy

The work with HFFs combined with experimental input led to the no-
tion of hierarchy of Planck constants interpreted in terms of dark matter.
The hierarchy is realized via a generalization of the notion of imbed-
ding space obtained by gluing infinite number of its variants along com-
mon lower-dimensional quantum critical sub-manifolds. These variants of
imbedding space are characterized by discrete subgroups of SU(2) acting
in M4 and CP2 degrees of freedom as either symmetry groups or homo-
topy groups of covering. Among other things this picture implies a general
model of fractional quantum Hall effect.

This picture also leads to the identification of number theoretical
braids as points of partonic 2-surface which correspond to the minima
of generalized eigenvalue of Dirac operator, a scalar field to which Higgs
vacuum expectation is proportional to. Higgs vacuum expectation has
thus a purely geometric interpretation. The outcome is an explicit for-
mula for the Dirac determinant consistent with the vacuum degeneracy of
Kähler action and its finiteness and algebraic number property required
by p-adicization by number theoretic universality.

What is especially remarkable is that the construction gives also the
4-D space-time sheets associated with the light-like orbits of partonic 2-
surfaces: it remains to be shown whether they correspond to preferred
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extremals of Kähler action. One can conclude that the hierarchy of Planck
constants is now an essential part of construction of quantum TGD and of
mathematical realization of the notion of quantum criticality rather than
a possible generalization of TGD.

1.4. Number theoretical symmetries

TGD as a generalized number theory vision leads to the idea that also
number theoretical symmetries are important for physics.

a) There are good reasons to believe that the strands of number theo-
retical braids can be assigned with the roots of a polynomial with suggests
the interpretation corresponding Galois groups as purely number theoret-
ical symmetries of quantum TGD. Galois groups are subgroups of the
permutation group S∞ of infinitely manner objects acting as the Galois
group of algebraic numbers. The group algebra of S∞ is HFF which can be
mapped to the HFF defined by configuration space spinors. This picture
suggest a number theoretical gauge invariance stating that S∞ acts as a
gauge group of the theory and that global gauge transformations in its
completion correspond to the elements of finite Galois groups represented
as diagonal groups of G×G× .... of the completion of S∞.

b) HFFs inspire also an idea about how entire TGD emerges from
classical number fields, actually their complexifications. In particular,
SU(3) acts as subgroup of octonion automorphisms leaving invariant pre-
ferred imaginary unit and M4 × CP2 can be interpreted as a structure
related to hyper-octonions which is a subspace of complexified octonions
for which metric has naturally Minkowski signature. This would mean
that TGD could be seen also as a generalized number theory. This con-
jecture predicts the existence of two dual formulations of TGD based on
the identification space-times as 4-surfaces in hyper-octonionic space M8

resp. M4 × CP2.

2. The construction of S-matrix

The construction of S-matrix involves several ideas that have emerged
during last years and involve symmetries in an essential manner.

2.1 Zero energy ontology

Zero energy ontology motivated originally by TGD inspired cosmology
means that physical states have vanishing conserved net quantum numbers
and are decomposable to positive and negative energy parts separated by a
temporal distance characterizing the system as a space-time sheet of finite
size in time direction. The particle physics interpretation is as initial and
final states of a particle reaction. Obviously a profound modification of
existing views about realization of symmetries is in question.

S-matrix and density matrix are unified to the notion of M-matrix
defining time-like entanglement and expressible as a product of square
root of density matrix and of unitary S-matrix. Thermodynamics becomes
therefore a part of quantum theory. One must distinguish M-matrix from
U-matrix defined between zero energy states and analogous to S-matrix
and characterizing the unitary process associated with quantum jump.
U-matrix is most naturally related to the description of intentional action
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since in a well-defined sense it has elements between physical systems
corresponding to different number fields.

2.2 Quantum TGD as almost topological QFT

Light-likeness of the basic fundamental objects implies that TGD is
almost topological QFT so that the formulation in terms of category theo-
retical notions is expected to work. M-matrices form in a natural manner
a functor from the category of cobordisms to the category of pairs of
Hilbert spaces and this gives additional strong constraints on the the-
ory. Super-conformal symmetries implied by the light-likeness pose very
strong constraints on both state construction and on M-matrix and U-
matrix. The notions of n-category and n-groupoid which represents a
generalization of the notion of group could be very relevant to this view
about M-matrix.

2.3. Quantum measurement theory with finite measurement resolution

The notion of measurement resolution represented in terms of inclu-
sions N ⊂M of HFFs is an essential element of the picture. Measurement
resolution corresponds to the action of the included sub-algebra creating
zero energy states in time scales shorter than the cutoff scale. This means
that complex rays of state space are effectively replaced with N rays. The
condition that the action of N commutes with the M-matrix is a powerful
symmetry and implies that the time-like entanglement characterized by
M-matrix corresponds to Connes tensor product. Together with super-
conformal symmetries this symmetry should fix possible M-matrices to a
very high degree.

The notion of number theoretical braid realizes the notion of finite
measurement resolution at space-time level and gives a direct connection
to topological QFTs describing braids. The connection with quantum
groups is highly suggestive since already the inclusions of HFFs involve
these groups. Effective non-commutative geometry for the quantum crit-
ical sub-manifolds M2 ⊂M4 and S2 ⊂ CP2 might provide an alternative
notion for the reduction of stringy anti-commutation relations for induced
spinor fields to anti-commutations at the points of braids.

1 Introduction

This chapter provides a summary about the role of symmetries in the construc-
tion of quantum TGD. The discussions are based on the general vision that
quantum states of the Universe correspond to the modes of classical spinor fields
in the ”world of the classical worlds” identified as the infinite-dimensional config-
uration space of light-like 3-surfaces of H = M4×CP2 (more or less-equivalently,
the corresponding 4-surfaces defining generalized Bohr orbits). The following
topics are discussed on basis of this vision.
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1.1 Geometric ideas

TGD relies heavily on geometric ideas, which have gradually generalized during
the years. Symmetries play a key role as one might expect on basis of general
definition of geometry as a structure characterized by a given symmetry.

1.1.1 Physics as infinite-dimensional Kähler geometry

1. The basic idea is that it is possible to reduce quantum theory to config-
uration space geometry and spinor structure. The geometrization of loop
spaces inspires the idea that the mere existence of Riemann connection
fixes configuration space Kähler geometry uniquely. Accordingly, configu-
ration space can be regarded as a union of infinite-dimensional symmetric
spaces labelled by zero modes labelling classical non-quantum fluctuating
degrees of freedom.

The huge symmetries of the configuration space geometry deriving from
the light-likeness of 3-surfaces and from the special conformal properties
of the boundary of 4-D light-cone would guarantee the maximal isometry
group necessary for the symmetric space property. Quantum criticality
is the fundamental hypothesis allowing to fix the Kähler function and
thus dynamics of TGD uniquely. Quantum criticality leads to surprisingly
strong predictions about the evolution of coupling constants.

2. Configuration space spinors correspond to Fock states and anti-commutation
relations for fermionic oscillator operators correspond to anti-commutation
relations for the gamma matrices of the configuration space. Configura-
tion space gamma matrices contracted with Killing vector fields give rise
to a super-algebra which together with Hamiltonians of the configuration
space forms what I have used to called super-canonical algebra.

Super-canonical degrees of freedom represent completely new degrees of
freedom and have no electroweak couplings. In the case of hadrons super-
canonical quanta correspond to what has been identified as non-perturbative
sector of QCD: they define TGD correlate for the degrees of freedom
assignable to hadronic strings. They are responsible for the most of the
mass of hadron and resolve spin puzzle of proton.

Besides super-canonical symmetries there are Super-Kac Moody symme-
tries assignable to light-like 3-surfaces and together these algebras ex-
tend the conformal symmetries of string models to dynamical conformal
symmetries instead of mere gauge symmetries. The construction of the
representations of these symmetries is one of the main challenges of quan-
tum TGD. The assumption that the commutator algebra of these super-
canonical and super Kac-Moody algebras annihilates physical states gives
rise to Super Virasoro conditions which could be regarded as analogs of
configuration space Dirac equation.

Modular invariance is one aspect of conformal symmetries and plays a key
role in the understanding of elementary particle vacuum functionals and
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the description of family replication phenomenon in terms of the topology
of partonic 2-surfaces.

3. Configuration space spinors define a von Neumann algebra known as
hyper-finite factor of type II1 (HFFs). This realization has led also to
a profound generalization of quantum TGD through a generalization of
the notion of imbedding space to characterize quantum criticality. The
resulting space has a book like structure with various almost-copies of
imbedding space representing the pages of the book meeting at quantum
critical sub-manifolds. The outcome of this approach is that the exponents
of Kähler function and Chern-Simons action are not fundamental objects
but reduce to the Dirac determinant associated with the modified Dirac
operator assigned to the light-like 3-surfaces.

1.1.2 p-Adic physics as physics of cognition and intentionality

p-Adic mass calculations relying on p-adic length scale hypothesis led to an
understanding of elementary particle masses using only super-conformal sym-
metries and p-adic thermodynamics. The need to fuse real physics and various
p-adic physics to single coherent whole led to a generalization of the notion of
number obtained by gluing together reals and p-adics together along common
rationals and algebraics. The interpretation of p-adic space-time sheets is as
correlates for cognition and intentionality. p-Adic and real space-time sheets
intersect along common rationals and algebraics and the subset of these points
defines what I call number theoretic braid in terms of which both configuration
space geometry and S-matrix elements should be expressible. Thus one would
obtain number theoretical discretization which involves no adhoc elements and
is inherent to the physics of TGD.

Perhaps the most dramatic implication relates to the fact that points, which
are p-adically infinitesimally close to each other, are infinitely distant in the
real sense (recall that real and p-adic imbedding spaces are glued together along
rational imbedding space points). This means that any open set of p-adic space-
time sheet is discrete and of infinite extension in the real sense. This means
that cognition is a cosmic phenomenon and involves always discretization from
the point of view of the real topology. The testable physical implication of
effective p-adic topology of real space-time sheets is p-adic fractality meaning
characteristic long range correlations combined with short range chaos.

Also a given real space-time sheets should correspond to a well-defined prime
or possibly several of them. The classical non-determinism of Kähler action
should correspond to p-adic non-determinism for some prime(s) p in the sense
that the effective topology of the real space-time sheet is p-adic in some length
scale range. p-Adic space-time sheets with same prime should have many com-
mon rational points with the real space-time and be easily transformable to the
real space-time sheet in quantum jump representing intention-to-action trans-
formation. The concrete model for the transformation of intention to action
leads to a series of highly non-trivial number theoretical conjectures assuming
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that the extensions of p-adics involved are finite-dimensional and can contain
also transcendentals.

An ideal realization of the space-time sheet as a cognitive representation
results if the CP2 coordinates as functions of M4

+ coordinates have the same
functional form for reals and various p-adic number fields and that these surfaces
have discrete subset of rational numbers with upper and lower length scale
cutoffs as common. The hierarchical structure of cognition inspires the idea
that S-matrices form a hierarchy labelled by primes p and the dimensions of
algebraic extensions.

The number-theoretic hierarchy of extensions of rationals appears also at
the level of configuration space spinor fields and allows to replace the notion
of entanglement entropy based on Shannon entropy with its number theoretic
counterpart having also negative values in which case one can speak about
genuine information. In this case case entanglement is stable against Negentropy
Maximization Principle stating that entanglement entropy is minimized in the
self measurement and can be regarded as bound state entanglement. Bound
state entanglement makes possible macro-temporal quantum coherence. One
can say that rationals and their finite-dimensional extensions define islands of
order in the chaos of continua and that life and intelligence correspond to these
islands.

TGD inspired theory of consciousness and number theoretic considerations
inspired for years ago the notion of infinite primes [E3]. It came as a surprise,
that this notion might have direct relevance for the understanding of mathemat-
ical cognition. The ideas is very simple. There is infinite hierarchy of infinite
rationals having real norm one but different but finite p-adic norms. Thus sin-
gle real number (complex number, (hyper-)quaternion, (hyper-)octonion) cor-
responds to an algebraically infinite-dimensional space of numbers equivalent
in the sense of real topology. Space-time and imbedding space points ((hyper-
)quaternions, (hyper-)octonions) become infinitely structured and single space-
time point would represent the Platonia of mathematical ideas. This structure
would be completely invisible at the level of real physics but would be crucial
for mathematical cognition and explain why we are able to imagine also those
mathematical structures which do not exist physically. Space-time could be also
regarded as an algebraic hologram. The connection with Brahman=Atman idea
is also obvious.

1.1.3 Hierarchy of Planck constants and dark matter hierarchy

The work with hyper-finite factors of type II1 (HFFs) combined with experi-
mental input led to the notion of hierarchy of Planck constants interpreted in
terms of dark matter [A9]. The hierarchy is realized via a generalization of
the notion of imbedding space obtained by gluing infinite number of its vari-
ants along common lower-dimensional quantum critical sub-manifolds. These
variants of imbedding space are characterized by discrete subgroups of SU(2)
acting in M4 and CP2 degrees of freedom as either symmetry groups or ho-
motopy groups of covering. Among other things this picture implies a general
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model of fractional quantum Hall effect.
This framework also leads to the identification of number theoretical braids

as points of partonic 2-surface which correspond to the minima of a generalized
eigenvalue of Dirac operator, a scalar field to which Higgs vacuum expecta-
tion is proportional to. Higgs vacuum expectation has thus a purely geometric
interpretation. The outcome is an explicit formula for the Dirac determinant
consistent with the vacuum degeneracy of Kähler action and its finiteness and
algebraic number property required by p-adicization requiring number theoretic
universality. The zeta function associated with the eigenvalues (rather than Rie-
mann Zeta as believed originally) in turn defines the super-canonical conformal
weights as its zeros so that a highly coherent picture result.

What is especially remarkable is that the construction gives also the 4-D
space-time sheets associated with the light-like orbits of the partonic 2-surfaces:
it remains to be shown whether they correspond to preferred extremals of Kähler
action. It is clear that the hierarchy of Planck constants has become an essential
part of the construction of quantum TGD and of mathematical realization of
the notion of quantum criticality rather than a possible generalization of TGD.

1.1.4 Number theoretical symmetries

TGD as a generalized number theory vision leads to the idea that also number
theoretical symmetries are important for physics.

1. There are good reasons to believe that the strands of number theoretical
braids can be assigned with the roots of a polynomial with suggests the
interpretation corresponding Galois groups as purely number theoretical
symmetries of quantum TGD. Galois groups are subgroups of the permu-
tation group S∞ of infinitely manner objects acting as the Galois group
of algebraic numbers. The group algebra of S∞ is HFF which can be
mapped to the HFF defined by configuration space spinors. This picture
suggest a number theoretical gauge invariance stating that S∞ acts as a
gauge group of the theory and that global gauge transformations in its
completion correspond to the elements of finite Galois groups represented
as diagonal groups of G×G× .... of the completion of S∞. The groups G
should relate closely to finite groups defining inclusions of HFFs.

2. HFFs inspire also an idea about how entire TGD emerges from classical
number fields, actually their complexifications. In particular, SU(3) acts
as subgroup of octonion automorphisms leaving invariant preferred imag-
inary unit and M4 × CP2 can be interpreted as a structure related to
hyper-octonions which is a subspace of complexified octonions for which
metric has naturally Minkowski signature. This would mean that TGD
could be seen also as a generalized number theory. This conjecture predicts
the existence of two dual formulations of TGD based on the identification
space-times as 4-surfaces in hyper-octonionic space M8 resp. M4 × CP2.
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3. The vision about TGD as a generalized number theory involves also the
notion of infinite primes. This notion leads to a further generalization
of the ideas about geometry: this time the notion of space-time point
generalizes so that it has an infinitely complex number theoretical anatomy
not visible in real topology.

1.2 The construction of S-matrix

The construction of S-matrix involves several ideas that have emerged during
last years and involve symmetries in an essential manner.

1.2.1 Zero energy ontology

Zero energy ontology motivated originally by TGD inspired cosmology means
that physical states have vanishing conserved net quantum numbers and are
decomposable to positive and negative energy parts separated by a temporal
distance characterizing the system as a space-time sheet of finite size in time
direction. The particle physics interpretation is as initial and final states of a
particle reaction. Obviously a profound modification of existing views about
realization of symmetries is in question.

S-matrix and density matrix are unified to the notion of M-matrix defining
time-like entanglement and expressible as a product of square root of density
matrix and of unitary S-matrix. Thermodynamics becomes therefore a part
of quantum theory. One must distinguish M-matrix from U-matrix defined
between zero energy states and analogous to S-matrix and characterizing the
unitary process associated with quantum jump. U-matrix is most naturally
related to the description of intentional action since in a well-defined sense it
has elements between physical systems corresponding to different number fields.

1.2.2 Quantum TGD as almost topological QFT

Light-likeness of the basic fundamental objects implies that TGD is almost
topological QFT so that the formulation in terms of category theoretical no-
tions is expected to work. M-matrices form in a natural manner a functor from
the category of cobordisms to the category of pairs of Hilbert spaces and this
gives additional strong constraints on the theory. Super-conformal symmetries
implied by the light-likeness pose very strong constraints on both state construc-
tion and on M-matrix and U-matrix. The notions of n-category and n-groupoid
which represents a generalization of the notion of group could be very relevant
to this view about M-matrix.

1.2.3 Quantum measurement theory with finite measurement reso-
lution

The notion of measurement resolution represented in terms of inclusions N ⊂
M of HFFs is an essential element of the picture. Measurement resolution
corresponds to the action of the included sub-algebra creating zero energy states
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in time scales shorter than the cutoff scale. This means that complex rays of
state space are effectively replaced with N rays. The condition that the action
of N commutes with the M-matrix is a powerful symmetry and implies that the
time-like entanglement characterized by M-matrix corresponds to Connes tensor
product. Together with super-conformal symmetries this symmetry should fix
possible M-matrices to a very high degree.

The notion of number theoretical braid realizes the notion of finite measure-
ment resolution at space-time level and gives a direct connection to topological
QFTs describing braids. The connection with quantum groups is highly sug-
gestive since already the inclusions of HFFs involve these groups. Effective
non-commutative geometry for the quantum critical sub-manifolds M2 ⊂ M4

and S2 ⊂ CP2 might provide an alternative notion for the reduction of stringy
anti-commutation relations for induced spinor fields to anti-commutations at
the points of braids.

1.2.4 Generalization of Feynman diagrams

An essential difference between TGD and string models is the replacement of
stringy diagrams with generalized Feynman diagrams obtained by gluing 3-D
light-like surfaces (instead of lines) together at their ends represented as partonic
2-surfaces. This makes the construction of vertices very simple. The notion of
number theoretic braid in turn implies discretization having also interpretation
in terms of non-commutativity due to finite measurement resolution replacing
anti-commutativity along stringy curves with anti-commutativity at points of
braids. Braids can replicate at vertices which suggests an interpretation in
terms of topological quantum computation combined with non-faithful copying
and communication of information. The analogs of stringy diagrams have quite
different interpretation in TGD: for instance, photons travelling via two different
paths in double slit experiment are represented in terms of stringy branching of
the photonic 2-surface.

1.2.5 Symplectic variant of QFT as basic building block of construc-
tion

The latest discovery related to the construction of M-matrix was the realization
that a symplectic variant of conformal field theories might be a further key el-
ement in the concrete construction of n-point functions and M-matrix in zero
energy ontology. Although I have known super-canonical (super-symplectic)
symmetries to be fundamental symmetries of quantum TGD for almost two
decades, I failed for some reason to realize the existence of symplectic QFT,
and discovered it while trying to understand quite different problem - the fluc-
tuations of cosmic microwave background! The symplectic contribution to the
n-point function satisfies fusion rules and involves only variables which are sym-
plectic invariants constructed using geodesic polygons assignable to the sub-
polygons of n-polygon defined by the arguments of n-point function. Fusion
rules lead to a concrete recursive formula for n-point functions and M-matrix in
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contrast to the iterative construction of n-point functions used in perturbative
QFT.

1.3 Some general predictions of quantum TGD

TGD is consistent with the symmetries of the standard model by construction
although there are definite deviations from the symmetries of standard model.
TGD however predicts also a lot of new physics. Below just some examples of
the predictions of TGD.

1. Fractal hierarchies meaning the existence of scaled variants of standard
model physics is the basic prediction of quantum TGD. p-Adic length
scale hypothesis predicts the possibility that elementary particles can have
scaled variants with mass scales related by power of

√
2. Dark matter

hierarchy predicts the existence of infinite number of scaled variants with
same mass spectrum with quantum scales like Compton length scaling like
h̄.

2. TGD predicts that standard model fermions and gauge bosons differ topo-
logically in a profound manner. Fermions correspond to light-like worm-
hole throats associated with topologically condensed CP2 type extremals
whereas gauge bosons correspond to fermion-antifermion states associated
with the throats of wormhole contacts connecting two space-time sheets
with opposite time orientation. The implication is that Higgs vacuum
expectation value cannot contribute to fermion mass: this conforms with
the results of p-adic mass calculations. Super-canonical quanta give dom-
inating contribution to most hadron masses. These degrees of freedom
correspond to those of hadronic string and should not reduce to QCD.
They are also crucial for TGD variants of black holes.

3. The most fascinating applications of zero energy ontology are to quantum
biology and TGD inspired theory of consciousness. Basic new element
are negative energy photons making possible communications to the di-
rection of geometric past. Here also dark matter hierarchy is involved in
an essential manner.

4. In cosmology the mere imbeddability required for Robertson-Walker cos-
mology implies that critical and over-critical cosmologies are almost unique
and characterized by their finite duration. The cosmological expansion is
accelerating for them and there is no need to assume cosmological con-
stant. Macroscopic quantum coherence of dark matter in astrophysical
scales is a dramatic prediction and allows also to assign periods of ac-
celerating expansion to quantum phase transition changing the value of
gravitational Planck constant. The dark matter parts of astrophysical
systems are predicted to be quantum systems.

5. The notion of generalized imbedding space and intriguing findings about
inclusions of HFFs suggests that the physics of TGD Universe is universal
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in the sense that it is possible to engineer a system able to mimic the
physics of any consistent gauge theory. Kind of analog of Turing machine
would be in question.

1.4 Relationship to super-strings and M-theory

There are arguments suggesting that the almost topological conformal field the-
ory associated with quantum TGD has maximal N = 4 super-conformal symme-
try with the inherent gauge group SU(2)×U(2) identified in terms of rotations
and electro-weak symmetries acting on imbedding space spinors. The (4,4) sig-
nature characterizing N = 4 SCA topological field theory is not a problem since
in TGD framework the target space becomes a fictive concept defined by the
Cartan algebra. Both M4 × CP2 decomposition of the imbedding space and
space-time dimension are crucial for the 2 + 2 + 2 + 2 structure of the Cartan
algebra, which together with the notions of the configuration space and gener-
alized coset representation formed from super Kac-Moody and super-canonical
algebras guarantees N = 4 super-conformal invariance.

Including the 2 gauge degrees of freedom associated with M2 factor of
M4 = M2 × E2 the critical dimension becomes D = 10 and and including
the radial degree of light-cone boundary the critical dimension becomes D = 11
of M-theory. Hence the fictive target space associated with the vertex operator
construction corresponds to a flat background of super-string theory and flat
background of M-theory with one light-like direction. From TGD point view
the difficulties of these approaches would be due to the un-necessary assump-
tion that the fictive target space defined by the Cartan algebra corresponds to
the physical imbedding space. The flatness of the fictive target space forces to
introduce the notion of spontaneous compactification and dynamical imbedding
space and this in turn leads to the notion of landscape.

2 Symmetries

Besides isometries of the imbedding space, the most important symmetries of
TGD Universe are general coordinate invariance fixing completely the general
mathematical structure of the theory and super-canonical and super Kac-Moody
conformal symmetries allowing to understand the quantum number spectrum
of physical states.

2.1 General Coordinate Invariance and Poincare invari-
ance

The following considerations related to general coordinate invariance became
somewhat obsolete after the emergence of the TGD as a generalized number
theory vision which led to the realization that thanks to the non-determinism of
Kähler action the dynamics nicely factors into cosmological and local dynamics.
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General coordinate invariance raises heavy technical difficulties in the quan-
tization of General Relativity. Similar technical difficulties are created by ordi-
nary gauge invariance in gauge theories and by conformal invariance in string
theories. This problem is encountered also in TGD approach. The integration
over all possible Diff4 equivalent 3-surfaces X3 at the orbit of X4(Y 3) such
that Y 3 belongs to light cone boundary is a poorly defined procedure. Nothing
however forbids ’gauge fixing’ by restricting configuration space integration to
the lightcone boundary. In fact, configuration space integration defined in this
manner is certainly a Diff4 invariant procedure.

Classical non-determinism however destroys this naive picture. The huge
vacuum degeneracy of the Kähler action suggests that one can have large num-
bers of degenerate absolute minima of the Kähler action obtained by gluing vac-
uum extremals to non-vacuum space-time surfaces and by performing a slight
deformation. For a given Y 3 there are in general several absolute minimum
4-surfaces X4(Y 3) going through Y 3: typically X4(Y 3) is expected to suffer
multi-furcations at some time values. This degeneracy forces the generalization
of the concept of 3-surface by allowing also 3-surfaces, which are unions of Y 3

and minimal number of space like 3-surfaces X3
i at a particular space-time sur-

face X4(Y 3) fixing this particular 4-surface uniquely. The mutual separations
of X3

i and Y 3 are in general time like and in TGD inspired theory of conscious-
ness these 3-surfaces provide a geometric model of thought as an N-snapshot
simulation of the classical time development.

As far as configuration space integration is considered, discrete classical non-
determinism of the Kähler action would not pose any problems of principle.
Since the value of the Kähler function is same for all degenerate space-time
surfaces X4(Y 3), the functional integration over the association sequences would
reduce to a summation over the degenerate branches of space-time surfaces
so that one can still reduce configuration space integration to the light cone
boundary.

The description in terms of association sequences fails for CP2 type extremals
which are essentially four-dimensional objects and the attempts to reduce the
configuration space integration to the light cone boundary become unpractical.
In fact, very natural separation of local physics from light cone boundary occurs
and by the crossing symmetry argument one can deduce S-matrix as the overlaps
of the vacuum vacuum functional with zero energy states. Of course, this is kind
of reduction is not even desirable unless one is interested in quantum cosmology.

The possibility of negative Poincare energies inspires the hypothesis that the
total quantum numbers and classical conserved quantities of the Universe vanish.
This view is consistent with experimental facts if gravitational energy is defined
as a difference of Poincare energies of positive and negative energy matter.
Space-time surface consists of pairs of positive and negative energy space-time
sheets created at some moment from vacuum and branching at that moment.
This allows to select X3 uniquely and define X4(X3) as the absolute minimum of
Kähler action in the set of 4-surfaces going through X3. These space-time sheets
should also define uniquely the light like 7-surface X3

l × CP2, most naturally
as the ”earliest” surface of this kind. Note that this means that it become
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possible to assign a unique value of geometric time to the space-time sheet.
This is of special importance in TGD inspired theory of consciousness since it
makes possible to understand the connection between subjective experienced
time (quantum jump sequence) and geometric time. As far as fractal Russian
doll cosmology predicted by TGD is considered M4 and M4

+ options are more
or less equivalent.

For M4 option all Poincare transforms of surfaces X3
l ×CP2 are possible. It

seems that the most natural identification for X3
l ⊂M4 is as unions of arbitrary

numbers of future and past directed light cone boundaries so that configuration
space would decompose into a union of sectors labelled by the positions for the
dips of the light cone boundaries. The exact Poincare invariance of the theory
realized also at configuration space level means an enormous simplification and
the earlier proposal for the definition of Diff4 invariant M4 translations becomes
un-necessary. This definition can be however found from Appendix of [B3].

2.2 Super-symmetry at the space-time level

The interpretation of the bosonic Kac Moody symmetries is as deformations
preserving the light likeness of the light like 3-D CD X3

l . Gauge symmetries are
in question when the intersections of X3

l with 7-D CDs X7 are not changed.
Since general coordinate invariance corresponds to gauge degeneracy of the met-
ric it is possible to consider reduced configuration space consisting of the light
like 3-D CDs. The conformal symmetries in question imply a further degener-
acy of the configuration space metric and effective metric 2-dimensionality of
3-surfaces as a consequence. These conformal symmetries are accompanied by
N = 4 local super conformal symmetries defined by the solutions of the induced
spinor fields.

If the notion of number theoretic spontaneous compactification [E2] makes
sense, space-time surfaces can be also regarded as hyper-quaternionic 4-surfaces
inM8 having hyper-octonionic structure. Hyper-quaternionic and hyper-octonionic
variants of ordinary conformal symmetries would act as hidden symmetries not
manifest in M4 × CP2 picture.

The solutions of the modified Dirac equation DΨ = 0, define the modes
which do not contribute to the Dirac determinant of the modified Dirac operator
in terms of which the vacuum functional assumed to correspond to the expo-
nent of the Kähler action is defined. Thus they define gauge super-symmetries.
Usually D selects the physical helicities by the requirement that it annihilates
physical states: now the situation is just the opposite. D2 annihilates the gen-
eralized eigen states both at space-like and light like 3-surfaces. Hence the roles
of the physical and non-physical helicities are switched. It is the generalized
eigen modes of D with non-vanishing eigenvalues λ, which code for the physics
whereas the solutions of the modified Dirac equation define super gauge sym-
metries.

At the space-like 3-surfaces associated with 7-D CDs the spinor harmonics of
the configuration space satisfy the M4×CP2 counterpart of the massless Dirac
equation so that non-physical helicities are eliminated in the standard sense
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at the imbedding space level. The righthanded neutrino does not generate an
N = 1 space-time super-symmetry contrary to the long held belief.

2.3 Super-symmetry at the level of configuration space

The gamma matrices of the configuration space are defined as matrix elements of
properly chosen operators between right-handed neutrino and second quantized
induced spinor field at space-like boundaries X3. These generators define the
fermionic generators of what I call super-canonical algebra. The right handed
neutrino can be replaced with any spinor harmonic of the imbedding space to
obtain an extended super-algebra, which can be used to construct the physical
states.

The requirement that super-generators vanish for the vacuum extremals re-
quires that the modified Dirac operator D+ or the inverse of D− appearing
in the matrix element of the ”Hermitian conjugate” S− = (S+)† of the super
charge S+. Here ± refers to the negative and positive energy space-time sheets
meeting at X3 or to the two maximally deterministic space-time regions sepa-
rated by the causal determinant. The operators D+ and D−1

− are restricted to
the spinor modes not annihilated by D±. The super-generator generated by the
covariantly constant right handed neutrino vanishes identically: a more rigorous
argument showing that N = 1 global super symmetry is indeed absent.

If the configuration space decomposes into a union of sectors labelled by
unions of light cones having dips at arbitrary points of M4, the spinor harmonics
can be assumed to define plane waves in M4 and even possess well-defined
four-momenta and mass squared values. Same applies to the super-canonical
generators defined by their commutators. This means that the generators of
the super-canonical algebra generated in this manner would possess well defined
four-momenta and thus their action would change the mass of the state. Space-
time super-symmetries would be absent. Similar argument applies to the Kac
Moody algebras associated with the light like 3-D CDs if super-canonical Super
Kac-Moody algebras provide dual representations of quantum states.

If the gist of these admittedly heuristic arguments is correct, they force to
modify drastically the existing view about space-time super-symmetries. The
problem how to break super-symmetry disappears since there is no space-time
symmetry be broken down. Super-symmetries are realized as a spectrum gen-
erating algebra rather than symmetries in the standard sense.

2.3.1 Super-canonical algebra

Super-canonical algebras are most relevant for the construction of the config-
uration space geometry. The original belief was that they predict only cos-
mological effects seems to be incorrect since the new view about energy and
non-determinism of Kähler action allow surfaces X3

l × CP2 such that X3
l is a

light-like 3-surface of M4
+ (union of boundaries of future and past directed light

cones) as causal determinants.
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The number theoretically inspired hypothesis is that the conformal weights
of the super-canonical generators expressible in terms of zeros of Riemann Zeta
(and perhaps also of polyzetas in case of bound states) take the role of com-
plex coordinate of complex plane and super-canonical generators labelled by
SO(3) × SU(3) quantum numbers take the role of primary fields on which su-
per Kac-Moody conformal transformations act as gauge transformations. This
would mean that super-conformal field theories would appear directly in the con-
struction of vertices and propagators and that super-canonical algebra brings
in additional completely new element. A more detailed discussion of this action
can be found in [C7, B4].

It has taken a lot of effort to find a correct interpretation of the super-
canonical algebra. It is now however clear that the super-canonical algebra
decomposes to two sub-algebras corresponding to Ramond and NS type su-
per generators which both come as two variants carrying quark resp. lepton
number. N-S type generators super-symmetrize the function algebra of the con-
figuration space whereas Ramond type generators super-symmetrize the Poisson
algebra. The anti-commutators of both leptonic and quark like Ramond type su-
per generators give components of the configuration space Kähler metric. The
dichotomies Ramond-NS, SUSY-kappa, and Poisson algebra-function algebra
are equivalent.

The light like surfaces X3
l ⊂ M4 appearing in the definition of 7-D CDs

are metrically 2-dimensional. Same applies to the light like 3-D CDs X3
l , and

to 3-surfaces in general by the degeneracy of the configuration space metric
in the set of space-time sheets for which 3-D light like CDs and their tangent
spaces coincide at X2 = X3

l ×X7. All relevant data about configuration space
geometry is contained by the 2-D surfaces X2.

This gives hopes of constructing unitary representations for a suitable Abelian
extension of super-canonical group. The extension is not however ordinary cen-
tral extension but the symplectic extension obtained by coupling the isometry
generators of this group to a suitable multiple of the Kähler potential of the con-
figuration space. This extension is not equivalent with the ordinary Kac Moody
extension since the anomaly term is not proportional to the integer n labelling
the generators. Furthermore, the global U(1) acting as a central extension is
replaced by a δM4

+-local U(1) defined by the function algebra of the light cone
boundary. The central extension term is defined uniquely at the maximum of
Kähler function by requiring that configuration space Hamiltonians vanish at
this point.

1. Are super-canonical conformal weights expressible in terms of seros of
Riemann zeta and polyzetas?

If the exponents piyk for the zeros z = 1/2 + iyk of Zeta are algebraic
numbers, linear combinations of zeros of zeta or at least s = 1/2 +

∑
k nkyk are

good candidates for radial conformal weights of super-canonical algebra. The
reason is that rs is algebraic number for r rational.

Riemann poly-zetas ζn(∆1, ...,∆n) could allow to generalize the notion of
binding energy to that of binding conformal weight. In this case zeros form
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a continuum so that the set of points (∆1, ...,∆n) = ζ−1
n (z = ξ1/ξ2) forms a

n-1 complex dimensional surface in Cn. Completely symmetrized polyzetas are
expressible using products of Riemann Zetas for arguments which are sums of
arguments for polyzeta. If ∆i are linear combinations of zeros of Zeta, polyzeta
involves Riemann Zeta only for arguments which are sums of zeros of ζ. Sym-
metrized polyzeta is non-vanishing when ∆i are non-trivial zeros of Zeta but
vanishes for trivial zeros at ∆i = −2ni. Also the zeros of symmetrized polyzeta
would have interpretation in terms of quantum criticality.

An interesting question is whether ζn has a discrete subset of zeros for which
p∆i is algebraic number for all primes p and ∆i. This could be the case. For
instance, suitable linear combinations of zeros of ζ define zeros of polyzeta. For
instance, (a, b) = (s1, s1 − s2) for any pair of zeros of zeta is zero of P2(a, b) =
ζ(a)ζ(b)− ζ(a+ b) whereas (a1, a2, a3) = (s1, s2 − s1, s2 − s1) defines a zero of

P3(a1, a2, a3) = 2ζ(a1 + a2 + a3) + ζ(a1)P2(a2, a3) + ζ(a2)P2(a3, a1)
+ζ(a3)P2(a1, a2)− 2ζ(a1)ζ(a2)ζ(a3)

for any pair (s1, s2) of zeros of ζ.
The conditions state that all Pm:s, m < n in the decomposition of Pn vanish

separately. Besides this one ak, say a1 = s1 must correspond to a zero of ζ. Same
is true for the sum σak and sub-sums involving a1. The number of conditions
increases rapidly as n increases. In the case of P4 the three triplets (a1, ai, aj)
must be of same form as n = 3 case and this allows only the trivial solution with
say a4 = 0. Thus it would seem that only n = 2 and n = 3 allow non-trivial
solutions for which bound state conformal weights are expressible in terms of
differences of zeros of Riemann ζ. What is nice that the linear combinations
of these conformal multi-weights give total conformal weights which are linear
combinations of zeros of zeta.

The special role of 2- and 3-parton states brings unavoidably in mind mesons
and baryons and the fact that hadrons containing larger number of valence
quarks have not yet been identified experimentally.

2. In what sense conformal confinement is realized?

The net values of conformal weights are real for physical states in the zero
energy ontology if the imaginary part of super-canonical conformal weight is
a conserved quantum number. If conformal confinement holds true at single
particle level then physical particles would have vanishing conformal weights.
In particular, ordinary baryons and mesons have real conformal weights and
could not therefore correspond to the 2- and 3-parton bound states having same
spectrum of net conformal weights as partons.

One must however take the notion of conformal confinement very critically.
The point is that the one-dimensional logarithmic plane waves x1/2+iy have
unitary inner product with respect to the scaling invariant inner product defined
by the integration measure dx/x. For this inner product, the real part of the
conformal weight should be 1/2 as it indeed is for the solutions of the conditions.
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If this interpretation is correct, then hadrons would represent states with non-
vanishing imaginary part of super-canonical conformal weight.

If one accepts complex conformal weights one must have some physical inter-
pretation for them. The identification of conjugation of zeros of zeta as charge
conjugation does not look promising since it would not leave neutral pion invari-
ant. Of course, critical configurations with real conformal weight are possible
at least formally and would correspond to trivial zeros s2 = −2n of ζ but s1

arbitrary zero. These configuration would not however define logarithmic plane
waves.

Laser physics might come in rescue here. So called phase conjugate photons
are known to behave differently from photons. I have already proposed that
all particles possess phase conjugates in TGD Universe. Phase conjugation is
identified as reversal of time arrow mapping positive energy particles to negative
energy particles. At space-time level this would mean an assignment of time
orientation to space-time sheet. This is consistent with the fact that energy
momentum complex consists of vector currents rather than forming a tensor.
The implication is that in S-matrix positive energy particles travelling towards
geometric future are not equivalent with negative energy particle travelling to-
wards geometric past. This is essential for the notions like remote metabolism
and time mirror mechanism.

The precise definition of phase conjugation at quantum level has remained
obscure. The identification of phase conjugation as conjugation for the zeros of
Zeta looks however very natural. This would suggest that the imaginary part
of complex conformal weight defines an additional momentum like quantum
number for elementary particles so that for complex conformal weights one
could assign to the particle a definite time orientation. This would give precise
meaning for the arrow of time in geometric sense at fundamental level.

Number theoretical considerations suggest that for a given algebraic exten-
sion of p-adic numbers only a finite number of zeros of Zeta are involved. This
would mean that elementary particles can have linear combinations

∑
k nkyk of

imaginary parts of zeros of zeta as an additional quantum number conserved in
reaction vertices. If one allows also trivial zeros as conformal weights there must
be correlation between SO(3) quantum numbers of δM4

+ Hamiltonians and real
conformal weight to guarantee orthonormalization [B2]. The possibility that
ordinary elementary particles correspond to real conformal weights cannot be
excluded.

According to the considerations of [C7], super-canonical conformal weights
which are zeros of zeta would characterize quantum critical states able to decay
to states which correspond to different values of Planck constant. Geometri-
cally this corresponds to leakage between different sectors of imbedding space
obtained by gluing together imbedding spaces corresponding to different values
of Planck constant.
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2.3.2 Super Kac-Moody algebra associated with 3-D causal deter-
minants

3-D light like CDs are metrically 2-dimensional and give rise to a conformal
symmetry in degrees of freedom transversal to the light like coordinate. The
bosonic generators of the conformal Kac Moody algebra correspond to the defor-
mations of the 2-surface X2 defining a particular light-like elementary particle
horizon or light-like boundary of a space-time sheet X3

l . If X3 is surface of M4
+,

X2 is analogous to a light source generating an expanding light front and in
this case spherical topology is the only stable topology. The conformal struc-
ture of 2-surface defines the local function algebra multiplying the generators
of the imbedding space isometries defining deformations of this algebra. Vira-
soro algebra corresponds to the deformations, which map X2 to itself or move
it along the 3-dimensional light like surface X3

l defined by it. The analogs in
case of δM4

+ = S2 × R+ are conformal symmetries of S2 and radial conformal
transformations. Fermionic super charges contribute in M4×SO(3, 1)×SU(3)
degrees of freedom and one can define Kac Moody generators as bilinears of the
fermionic generators (essentially sigma matrices of configuration space).

Also the super Kac-Moody algebra decomposes to two sub-algebras corre-
sponding to super generators carrying lepton and quark number. Now Ramond-
NS dichotomy corresponds to Poisson-function algebra dichotomy restricted to
the Hamiltonians representing isometries of δM4

+ × CP2 localized with respect
to X2 complex coordinate. 7–3 duality suggests that the anti-commutators of
quark generators give configuration space Kähler metric but in different coordi-
nate system. 7–3 duality would thus correspond to a coordinate transformation
relating preferred coordinates of the configuration space. Quantum measure-
ment theory and explicit construction of quantum states [F2] suggest a more
plausible interpretation: Kac-Moody algebra parameterizes zero modes identi-
fiable as classical degrees of freedom and in 1-1 correspondence with quantal
degrees of freedom contributing to the configuration space metric. Quantum
entanglement would induce the ”coordinate map” between the two degrees of
freedom.

Both the vector fields of color and M4 × SO(3, 1) local transformations
contribute if all light like 7-surfaces X3

l × CP2 ⊂ H are allowed (electroweak
symmetries have fermionic realization). The restriction of X3

l to the unions of
δM4
± means that configuration space decomposes into union of M4 translated

copies so that only local M4 × SU(3) acts as bosonic Kac Moody symmetries.
Since SU(3) does not actually correspond to a symmetry algebra now and

since U(2) in the decomposition CP2 = SU(3)/U(2) corresponds in a well-
defined sense electro-weak algebra identified as a holonomy algebra of the spinor
connection, one could argue that the U(2) generators of the bosonic SU(3)
Kac-Moody algebra should be identified as generators of local U(2)ew gauge
transformations whereas non-diagonal generators would correspond to Higgs
field. This interpretation would conform with the idea that Higgs field is a
genuine scalar field rather than composite of fermions. Whether also fermionic
SU(3) generators should be interpreted in the same manner is an open question.
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The topological explanation of the family replication phenomenon is based on
an assignment of 2-dimensional boundary to a 3-surface characterizing elemen-
tary particle. The precise identification of this surface has remained open and
one possibility is that the 2-surfaces X2 correspond to the intersection X3

l ×X7

of 3-D and 7-D Cds. This assumption would conform with the notion of ele-
mentary particle vacuum functionals defined in the zero modes characterizing
different conformal equivalences classes for X2.

By quantum classical correspondence one expects that Virasoro algebra as-
sociated with super Kac-Moody algebra acts on the conformal weights of the
super-canonical representations as conformal transformations and the genera-
tors of the super-canonical algebra can be regarded

2.3.3 Do NS and Ramond representation for the super Kac-Moody
algebra combine to a representation of single larger algebra?

In TGD context NS and Ramond representations belong automatically to a
larger algebraic structure defined by the quark like and leptonic oscillator op-
erators. One could even wonder whether one could combine these structures
to a larger algebra. Indeed, in [B4] it was noticed that one could combine NS
and Ramond type Super Virasoros to single larger Super Virasoro related by
the index scaling n→ 2n to Ramond type Super Virasoro. The motivation for
this operation was the possibility to formulate elegantly the vertices of the Yang
Mills type quantum field theory for Super Virasoro representations.

The extension is in practice almost trivial and means the introduction of new
Kac Moody and Virasoro generators with half odd integer conformal weight.
These generators are introduced automatically for the dynamical Virasoro for
which these generators are quadratic in the fermionic generators by allowing
the appearance of both half odd integer and integer fermionic generators in the
definition of Kac Moody generators and Super Virasoro generators. Half-odd
integer bosonic generators carry quantum numbers of leptoquark and do not
have interpretation as geometric transformations. Half odd integer generators
would create states having non-vanishing lepton and quark numbers and would
not contribute to the p-adic thermodynamics. This kind of scenario works only
provided the configuration space gamma matrices with integer and half odd
integer indices anti-commute. This is certainly the case by quarks ↔ NS and
leptons ↔ Ramond correspondences. One can also construct the ground states
using both n = 0 Ramond type fermionic generators and n = 1/2 leptonic
generators as well as linear and local bilinear fermionic invariants having n = 0.
This is in fact all what might be needed to construct vertex operators elegantly.
Hamiltonian evolution for L0 in turn is expected to define S-matrix (L0 contains
automatically interaction terms analogous to those associated with Yang Mills
action). Already the p-adic mass calculations suggested that NS and Ramond
type conditions are satisfied separately and this is indeed implied by the fact
that the corresponding super-generators carry different fermion numbers.

In p-adic thermodynamics one must pose the additional condition that the
total fermion number associated with the operators Gn and G†n creating ther-
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mal excitations from the ground state vanishes separately in each sector. This
implies automatically the chirality condition of p-adic mass calculations stating
that in each sector physical states contain an even number of super generators
Gn. There are reasons to expect that partition functions, the crucial element of
the p-adic mass calculations, are not changed. The reason is that the represen-
tation for the generalized algebra provides also a representation for the ordinary
Super Virasoro. It is obtained by defining Hermitian Super Virasoro generator
Ĝ as Ĝ = G + G†. Ln:s are same for these two kinds of representations. In
[F2] it is shown that the partition functions indeed remain unchanged if in each
sector of the Super Virasoro only fermion number zero operators create n > 0
excitations.

One immediate prediction of the modified Super Virasoro, is the existence of
elementary particles with fermion number higher than one. This result means
the extension of Super Virasoro structure to the level of many fermion states.
These states are probably highly unstable.

2.4 Comparison with string models

2.4.1 Super conformal symmetries in TGD and string theory

Super-conformal symmetries are fundamental symmetries of super string mod-
els, and TGD provides a realization of these symmetries in case of 3-dimensional
objects. What came as a surprise that there is handful of super-conformal sym-
metries. 7-D causal determinants δM4

±×CP2 allow both radial and transversal
super-conformal symmetries. Same applies to the light like 3-D CDs X3

l and this
boils down to the degeneracy of the configuration space metric in the sense that
two CDs X3

l with same intersection with 7-D CDs are metrically equivalent.
This in turn implies the effective 2-dimensionality of also space-like 3-surfaces.

Also the interior of space-time surface seems to allow super-conformal sym-
metries acting as super gauge symmetries of the modified Dirac action. The
most important implication Quaternion conformal invariance and its Abelian
version would be the corresponding super-symmetries perhaps realized only for
certain representative 4-surfaces in the gauge equivalence classes of 4-surfaces
having X3

l having given intersections with 7-D CDs.
That any solution of the modified Dirac operator defines a super symmetry

and it is generalized eigen states of the modified Dirac operator which corre-
spond to physical states. This means a profound deviation from both string
models and quantum field theories since the notion of virtual particle disap-
pears from the conceptual arsenal. Perhaps the most important implication
is that for generalized Feynman rules diagrams with loops are equivalent with
tree diagrams and there is no sense in making loop summations. Generalized
Feynman diagrams are more akin to braid diagrams than ordinary Feynman
diagrams. This means enormous simplification of the theory.

Super-canonical symmetry is something totally new and the generalization
of coset construction motivated by the commutatitivity of super Kac Moody
and super-canonical Virasoro algebras leads to the requirement that it is the
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differences of super-canonical and super Kac-Moody Virasoro generators which
annihilate physical states. By 7-3 duality the conformal central charge is van-
ishing. In string model the requirement that the central charge vanishes leads
to the critical dimension.

Effective 2-dimensionality means that super-conformal field theory having
N = 4 complex supersymmetries as gauge symmetries can be used to construct
the vertices of the theory. The surfaces X2 are analogous to orbits of closed
strings. On the other hand, 2-dimensional objects are fundamental rather than
1-dimensional objects so that the conformal invariance in TGD is more akin to
that of 2-D critical statistical systems than that of strings. The interpretation
of N = 4 complex super-symmetries as pure gauge super symmetries means
decisive different between TGD and string models reflecting as the absence of
sparticles.

2.4.2 The super generators G are not Hermitian in TGD!

An important difference between TGD based and the usual Super Virasoro
representations is that the Super Virasoro generator G cannot Hermitian in
TGD. The reason is that configuration space gamma matrices possess a well
defined fermion number. The hermiticity of the configuration space gamma
matrices Γ and of the Super Virasoro current G could be achieved by posing
Majorana conditions on the second quantized H-spinors. Majorana conditions
can be however realized only for space-time dimensionDmod 8 = 2 so that super
string type approach does not work in TGD context. This kind of conditions
would also lead to the non-conservation of baryon and lepton numbers.

An analogous situation is encountered in super-symmetric quantum mechan-
ics, where the general situation corresponds to super symmetric operators S, S†,
whose anti-commutator is Hamiltonian: {S, S†} = H. One can define a simpler
system by considering a Hermitian operator S0 = S + S† satisfying S2

0 = H:
this relation is completely analogous to the ordinary Super Virasoro relation
GG = L. On basis of this observation it is clear that one should replace ordi-
nary Super Virasoro structure GG = L with GG† = L in TGD context.

It took a long time to realize the trivial fact that N = 2 super-symmetry
is the standard physics counterpart for TGD super symmetry. N = 2 super-
symmetry indeed involves the doubling of super generators and super generators
carry U(1) charge having an interpretation as fermion number in recent context.
The so called short representations of N = 2 super-symmetry algebra can be
regarded as representations of N = 1 super-symmetry algebra.

Configuration space gamma matrix Γn, n > 0 corresponds to an operator
creating fermion whereas Γn, n < 0 annihilates antifermion. For the Hermitian
conjugate Γ†n the roles of fermion and antifermion are interchanged. Only the
anti-commutators of gamma matrices and their Hermitian conjugates are non-
vanishing. The dynamical Kac Moody type generators are Hermitian and are
constructed as bilinears of the gamma matrices and their Hermitian conjugates
and, just like conserved currents of the ordinary quantum theory, contain parts
proportional to a†a, b†b, a†b† and ab (a and b refer to fermionic and antifermionic
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oscillator operators). The commutators between Kac Moody generators and Kac
Moody generators and gamma matrices remain as such.

For a given value of m Gn, n > 0 creates fermions whereas Gn, n < 0
annihilates antifermions. Analogous result holds for G†n. Virasoro generators
remain Hermitian and decompose just like Kac Moody generators do. Thus
the usual anti-commutation relations for the super Virasoro generators must be
replaced with anti-commutations between Gm and G†n and one has

{Gm, G†n} = 2Lm+n + c
3 (m2 − 1

4 )δm,−n ,
{Gm, Gn} = 0 ,
{G†m, G†n} = 0 .

(1)

The commutators of type [Lm, Ln] are not changed. Same applies to the purely
kinematical commutators between Ln and Gm/G†m.

The Super Virasoro conditions satisfied by the physical states are as before
in case of Ln whereas the conditions for Gn are doubled to those of Gn, n < 0
and G†n, n > 0.

3 Does the modified Dirac action define the fun-
damental action principle?

Although quantum criticality in principle predicts the possible values of Kähler
coupling strength, one might hope that there exists even more fundamental ap-
proach involving no coupling constants and predicting even quantum criticality
and realizing quantum gravitational holography. The Dirac determinant asso-
ciated with the modified Dirac action is an excellent candidate in this respect.

3.1 Modified Dirac equation

In the following the problems of the ordinary Dirac action are discussed and
the notion of modified Dirac action is introduced. In particular, the following
problems are discussed.

1. Try to guess general formula for the spectrum of the modified Dirac op-
erator and for super-canonical conformal weights by assuming that the
eigenvalues are expressible in terms of the data assignable to the two
kinds of of number theoretical braids and that the product of vacuum
functional expressible as exponent of Kahler function and of the exponent
of Chern-Simons action is identifiable as Dirac determinant expressible as
product of M4 and CP2 parts. Since Kähler function is isometry invari-
ant only the Dirac determinant defined by M4 braid can contribute to it.
Chern-Simons action is not isometry invariant and can be identified as the
Dirac determinant associated with CP2 braid.

2. Try to understand whether the zeta functions involved can be identified
as Riemann Zeta or some zeta coding geometric data about partonic 2-
surface. Try to understand whether the assignment of a fixed prime p to
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a partonic 2-surface implies that the zeta function is actually an analog
for basic building block of Riemann Zeta.

3.1.1 Problems associated with the ordinary Dirac action

Minimal 2-surface represents a situation in which the representation of surface
reduces to a complex-analytic map. This implies that induced metric is hermi-
tian so that it has no diagonal components in complex coordinates (z, z) and
the second fundamental form has only diagonal components of type Hk

zz. This
implies that minimal surface is in question since the trace of the second funda-
mental form vanishes. At first it seems that the same must happen also in the
more general case with the consequence that the space-time surface is a minimal
surface. Although many basic extremals of Kähler action are minimal surfaces,
it seems difficult to believe that minimal surface property plus extremization
of Kähler action could really boil down to the absolute minimization of Kähler
action or a more general principle selecting preferred extremals as Bohr orbits
[E2].

This brings in mind a similar long-standing problem associated with the
Dirac equation for the induced spinors. The problem is that right-handed neu-
trino generates super-symmetry only provided that space-time surface and its
boundary are minimal surfaces. Although one could interpret this as a geo-
metric symmetry breaking, there is a strong feeling that something goes wrong.
Induced Dirac equation and super-symmetry fix the variational principle but
this variational principle is not consistent with Kähler action.

One can also question the implicit assumption that Dirac equation for the
induced spinors is consistent with the super-symmetry of the configuration space
geometry. Super-symmetry would obviously require that for vacuum extremals
of Kähler action also induced spinor fields represent vacua. This is however not
the case. This super-symmetry is however assumed in the construction of the
configuration space geometry so that there is internal inconsistency.

3.1.2 Super-symmetry forces modified Dirac equation

The above described three problems have a common solution. Nothing prevents
from starting directly from the hypothesis of a super-symmetry generated by
covariantly constant right-handed neutrino and finding a Dirac action which is
consistent with this super-symmetry. Field equations can be written as

DαT
α
k = 0 ,

Tαk =
∂

∂hkα
LK . (2)

If super-symmetry is present one can assign to this current its super-symmetric
counterpart
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Jαk = νRΓkTαl ΓlΨ ,

DαJ
αk = 0 . (3)

having a vanishing covariant divergence. The isometry currents currents and
super-currents are obtained by contracting Tαk and Jαk with the Killing vector
fields of super-symmetries. Note also that the super current

Jα = νRT
α
l ΓlΨ (4)

has a vanishing divergence.
By using the covariant constancy of the right-handed neutrino spinor, one

finds that the divergence of the super current reduces to

DαJ
αk = νRΓkTαl ΓlDαΨ .

(5)

The requirement that this current vanishes is guaranteed if one assumes that
modified Dirac equation

Γ̂αDαΨ = 0 ,

Γ̂α = Tαl Γl . (6)

This equation must be derivable from a modified Dirac action. It indeed is. The
action is given by

L = ΨΓ̂αDαΨ . (7)

Thus the variational principle exists. For this variational principle induced
gamma matrices are replaced with effective induced gamma matrices and the
requirement

DµΓ̂µ = 0 (8)

guaranteing that super-symmetry is identically satisfied if the bosonic field equa-
tions are satisfied. For the ordinary Dirac action this condition would lead to
the minimal surface property. What sounds strange that the essentially hy-
drodynamical equations defined by Kähler action have fermionic counterpart:
this is very far from intuitive expectations raised by ordinary Dirac equation
and something which one might not guess without taking super-symmetry very
seriously.
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3.1.3 How can one avoid minimal surface property?

These observations suggest how to avoid the emergence of the minimal surface
property as a consequence of field equations. It is not induced metric which
appears in field equations. Rather, the effective n metric appearing in the field
equations is defined by the anti-commutators of γ̂µ

ĝµν = {Γ̂µ, Γ̂ν} = 2T kµTνk . (9)

Here the index raising and lowering is however performed by using the induced
metric so that the problems resulting from the non-invertibility of the effective
metric are avoided. It is this dynamically generated effective metric which must
appear in the number theoretic formulation of the theory.

Field equations state that space-time surface is minimal surface with respect
to the effective metric. Note that a priori the choice of the bosonic action
principle is arbitrary. The requirement that effective metric defined by energy
momentum tensor has only non-diagonal components except in the case of non-
light-like coordinates, is satisfied for the known solutions of field equations.

3.1.4 Does the modified Dirac action define the fundamental action
principle?

There is quite fundamental and elegant interpretation of the modified Dirac ac-
tion as a fundamental action principle discussed also in [E2]. In this approach
vacuum functional can be defined as the Grassmannian functional integral as-
sociated with the exponent of the modified Dirac action. This definition is
invariant with respect to the scalings of the Dirac action so that theory contains
no free parameters.

An alternative definition is as a Dirac determinant which might be calcu-
lated in TGD framework without applying the poorly defined functional inte-
gral. There are good reasons to expect that the Dirac determinant exponent
of Kähler function for a preferred Bohr orbit like extremal of the Kähler action
with the value of Kähler coupling strength coming out as a prediction. Hence
the dynamics of the modified Dirac action at light-like partonic 3-surfaces X3

l ,
even when restricted to almost-topological dynamics induced by Chern-Simons
action, would dictate the dynamics at the interior of the space-time sheet.

The knowledge of the canonical currents and super-currents, together with
the anti-commutation relations stating that the fermionic super-currents SA
and SB associated with Hamiltonians HA and HB anti-commute to a bosonic
current H[A,B], allows in principle to deduce the anti-commutation relations
satisfied by the induced spinor field. In fact, these conditions replace the usual
anti-commutation relations used to quantize free spinor field. Since the normal
ordering of the Dirac action would give Kähler action,

Kähler coupling strength would be determined completely by the anti-commutation
relations of the super-canonical algebra. Kähler coupling strength would be dy-
namical and the selection of preferred extremals of Kähler action would be more
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or less equivalent with quantum criticality because criticality corresponds to
conformal invariance and the hyper-quaternionic version of the super-conformal
invariance results only for the extrema of Kähler action. p-Adic (or possibly
more general) coupling constant evolution and quantum criticality would come
out as a prediction whereas in the case that Kähler action is introduced as pri-
mary object, the value of Kähler coupling strength must be fixed by quantum
criticality hypothesis.

The mixing of the M4 chiralities of the imbedding space spinors serves as a
signal for particle massivation and breaking of super-conformal symmetry. The
induced gamma matrices for the space-time surfaces which are deformations of
M4 indeed contain a small contribution from CP2 gamma matrices: this implies
a mixing of M4 chiralities even for the modified Dirac action so that there is no
need to introduce this mixing by hand.

3.2 The association of the modified Dirac action to Chern-
Simons action and explicit realization of super-conformal
symmetries

Super Kac-Moody symmetries should correspond to solutions of modified Dirac
equation which are in some sense holomorphic. The discussion below is based
on the same general ideas but differs radically from the previous picture at the
level of details. The additional assumption inspired by the considerations of this
section is that the action associated with the partonic 3-surfaces is non-singular
and therefore Chern-Simons action for the induced Kähler gauge potential.

This means that TGD is at the fundamental level almost-topological QFT:
only the light-likeness of the partonic 3-surfaces brings in the induced metric
and gravitational and gauge interactions and induces the breaking of scale and
super-conformal invariance. The resulting theory possesses the expected super
Kac-Moody and super-canonical symmetries albeit in a more general form than
suggested by the considerations of this section. A connection of the spectrum
of the modified Dirac operator with the zeros or Riemann Zeta is suggestive
and provides support for the earlier number theoretic speculations concerning
the spectrum of super-canonical conformal weights. One can safely say, that if
this formulation is correct, TGD could not differ less from a physically trivial
theory.

3.2.1 Zero modes and generalized eigen modes of the modified Dirac
action

Consider net the zero modes and generalized eigen modes for the modified Dirac
operator.

1. The modified gamma matrices appearing in the modified Dirac equation
are expressible in terms of the Lagrangian density L assignable to the
light-like partonic 3-surface X43l as
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Γ̂α =
∂L

∂αhk
Γk , (10)

where Γk denotes gamma matrices of imbedding space. The modified
Dirac operator is defined as

D = Γ̂αDα , (11)

where Dα is the covariant derivative defined by the induced spinor con-
nection. Modified gamma matrices satisfy the condition

DαΓ̂α = 0 (12)

if the field equations associated with L are satisfied. This guarantees
that one indeed obtains the analog of the massless Dirac equation. Zero
modes of the modified Dirac equation should define the conformal super-
symmetries.

2. The generalized eigenvalues and eigen solutions of the modified Dirac op-
erator are defined as

DΨ = λNΨ ,

N = nkΓk .

(13)

Here nk denotes a light-like vector which must satisfy the integrability
condition

[
D,nkΓk

]
= 0 . (14)

if the analog D2Ψ = 0 for the square of massless Dirac equation is to hold
true. nk should be determined by the field equations associated with L
somehow and commutativity condition could fix n more or less uniquely.

If the commutativity condition holds true then any generalized eigen mode
Ψλ gives rise to a zero mode as Ψ = NΨλ. One can add to a given non-zero
mode any superposition of zero modes without affecting the generalized
eigen mode property.

The commutativity condition can be satisfied if the tangent space at each
point of X4 contains preferred plane M2 guaranteing HO−H duality and
having interpretation as a preferred plane of non-physical polarizations.
In this case n can be chosen to be constant light-like vector in M2.
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3. The hypothesis is that Kähler function is expressible in terms of the
Dirac determinant of the modified Dirac operator defined as the prod-
uct of the generalized eigenvalues. The Dirac determinant must carry
information about the interior of the space-time surface determined as
preferred extremal of Kähler action or (as the hypothesis goes) as hyper-
quaternionic or co-hyper-quaternionic 4-surface of M8 defining unique 4-
surface of M4 × CP2. The assumption that X3

L is light-like brings in
an implicit dependence on the induced metric. The simplest but non-
necessary assumption is that nk is a light-like vector field tangential to
X3
l so that the knowledge of X3

l fixes completely the dynamics.

4. If the action associated with the partonic light-like 3-surfaces contains
induced metric, the field equations become singular and ill-defined unless
one defines the field equations at X3

l via a limiting procedure and poses
additional conditions on the behavior of Ψ at X3

l . Situation changes if the
action does not contain the induced metric. The classical field equations
are indeed well-defined at light-like partonic 3-surfaces for Chern-Simons
action for the induced Kähler gauge potential

L = LC−S = kεαβγJαβAγ . (15)

One obtains the analog of WZW model with gauge field replaced with
the induced Kähler form. This action does not depend on the induced
metric explicitly so that in this sense a topological field theory results.
There is no dependence on M4 gamma matrices so that local Lorentz
transformations act as super-conformal symmetries of both classical field
equations and modified Dirac equation and SL(2, C) defines the analog of
the SU(2) Kac-Moody algebra for N = 4 SCA.

The facts that the induced metric is light-like for X3
l , that the modified Dirac

equation contains information about this and therefore about induced metric,
and that Dirac determinant is the product of the non-vanishing eigen values
of the modified Dirac operator, imply the failure of topological field theory
property at the level of Kähler function identified as the logarithm of the Dirac
determinant.

A more complicated option would be that the modified Dirac action contains
also interior term corresponding to the Kähler action. This alternative would
break super-conformal symmetries explicitly and almost-topological QFT prop-
erty would be lost. This option is not consistent with the idea that quantum-
classical correspondence relates the partonic dynamics at X3

l with the classical
dynamics in the interior of space-time providing first principle justification for
the basic assumptions of the quantum measurement theory.

The classical field equations defined by LC−S read as

Dµ
∂LC−S
∂µhk

= 0 ,
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∂LC−S
∂µhk

= εµαβ
[
2Jkl∂αhlAβ + JαβAk)

]
. (16)

From the explicit form of equations it is obvious that the most general solution
corresponds to a X3

l with at most 2-dimensional CP2 projection.
Although C-S action vanishes, the color isometry currents are in general

non-vanishing. One can assign currents also to super-Kac Moody and super-
canonical transformations using standard formulas and the possibility that the
corresponding charges define configuration space Hamiltonians and their super-
counterparts must be considered seriously.

Suppose that the CP2 projection is 2-dimensional and not a Lagrange mani-
fold. One can introduce coordinates for which the coordinates forX2 are same as
those for CP2 projection. For instance, complex coordinates (z, z) of a geodesic
sphere could be used as local coordinates for X2. One can also assign one M4

coordinate, call it r, with M4 projection X1 of X3
l . Locally this coordinate

can be taken to be one of the standard M4 coordinates. The remaining five
H-coordinates can be expressed in terms of (r, z, z) and light-likeness condition
boils down to the vanishing of the metric determinant:

det(g3) = 0 . (17)

All diffeomorphisms of H respecting the light-likeness condition are symmetries
of the solution ansatz.

Consider some special cases serve as examples.

1. The simplest situation results when X4
l is of form X1 ×X2, where X1 is

light-like random curve in M4 as for CP2 type vacuum extremals. In this
case light-likeness boils down to Virasoro conditions with real parameter r
playing the role analogous to that of a complex coordinate: this conformal
symmetry is dynamical and must be distinguished from conformal sym-
metries assignable to X2. A plausible guess is that light-likeness condition
quite generally reduces to the classical Virasoro conditions.

2. A solution in which CP2 projection is dynamical is obtained by assuming
that for a given value of M4 time coordinate CP2- and M4- projections
are one-dimensional curves. For instance, CP2 projection could be the
circle Θ = Θ(m0 ≡ t) whereas M4 projection could be the circle ρ =√
x2 + y2 = ρ(m0). Light-likeness condition reduces to the condition

gtt = 1−R2∂tΘ2 − ∂tρ2 = 0.

3.2.2 Classical field equations for the modified Dirac equation de-
fined by Chern-Simons action

The modified Dirac operator is given by

D =
∂LC−S
∂µhk

ΓkDµ
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= εµαβ
[
2Jkl∂αhlAβ + JαβAk

]
ΓkDµ ,

ε̂αβγ = εαβγ
√
g3 . (18)

Note ε̂αβγ = does not depend on the induced metric. The operator is non-trivial
only for 3-surfaces for which CP2 projection is 2-dimensional non-Lagrangian
sub-manifold. The modified Dirac operator reduces to a one-dimensional Dirac
operator

D = ε̂rαβ
[
2Jkl∂αhlAβ + JαβAk

]
ΓkDr . (19)

The solutions of the modified Dirac equation are obtained as spinors which are
covariantly constant with respect to the coordinate r:

DrΨ = 0 . (20)

Non-vanishing spinors Ψ1 = ∂rΨ satisfying ΓrΨ1 = 0 are not possible. Ψ defines
super-symmetry for the generalized eigen modes if the additional condition

Ψ = NΨ0 (21)

is satisfied. The interpretation as super-conformal symmetries makes sense if
the Fourier coefficients of zero modes and their conjugates are anticommuting
Grassmann numbers. The zero modes which are not of this form do not gen-
erate super-conformal symmetries and might correspond to massless particles.
TGD based vision about Higgs mechanism suggest the interpretation of nk as
a non-conserved gravitational four-momentum whose time average defines iner-
tial four-momentum of parton. The sum of the partonic four-momenta would
be identified as the classical four-momentum associated with the interior of the
space-time sheet.

The covariant derivatives Dα involve only CP2 spinor connection and the
metric induced from CP2. Dr involves CP2 spinor connection unless X3

l is of
form X1×X2 ⊂M4×CP2. The eigen modes of D correspond to the solutions
of

DΨ = λNΨ (22)

The first guess is that N = nkγk corresponds to the tangential light-like
vector nk = Φ∂rhk where Φ is a normalization factor which can depend on
position.

The obvious objection is that with this assumption it is difficult to under-
stand how Dirac determinant can correspond to an absolute extremum of Kähler
action for 4-D space-time sheet containing partonic 3-surfaces as causal deter-
minants (

√
g4 = 0). However, if one can select a unique M4 time coordinate,
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say as that associated with the rest system for the average four-momentum de-
fined as Chern-Simons Noether charge, then one can assign to nk a unique dual
obtained by changing the sign of its spatial components. The condition that
this vector is tangential to the 4-D space-time sheet would provide information
about the space-time sheet and bring in 4-dimensionality. At this stage one
must however leave the question about the choice of nk open.

One should be able to fix Φ apart from overall normalization. First of all,
the requirement that zero modes defines super symmetries implies the condition
[D,nkΓk]Ψ = 0 for zero modes. This condition boils down to the requirement

Dr(Φ∂rhkΓk)Ψ = 0 . (23)

This in turn boils down to a condition

Dr∂rh
k +

∂rΦ
Φ

∂rh
k = 0 . (24)

These conditions in turn guarantee that the condition

Dr(hkl∂rhk∂rhl) = 0 (25)

implied by the light-likeness condition are satisfied. Since Φ is determined apart
from a multiplicative constant from the light-likeness condition the system is
internally consistent. The conditions above are not general coordinate invariant
so that the coordinate r must correspond to a physically preferred coordinate
perhaps defined by the conditions above.

One can express the eigenvalue equation in the form

∂rΨ = λOΨ ,

O = (Γ̂r)−1N ,

(Γ̂r)−1 =
Γ̂r

akalhkl
, Γ̂r ≡ akΓk . (26)

This equation defines a flow with r in the role of a time parameter. The solutions
of this equation can be formally expressed as

Ψ(r, z, z) = Peλ
∫
O(r,z,z)drΨ0(z, z) . (27)

Here P denotes the ordered exponential needed because the operators O(r, zz)
need not commute for different values of r.
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3.2.3 Can one allow light-like causal determinants with 3-D CP2 pro-
jection?

The standard quantum field theory wisdom would suggest that light-like par-
tonic 3-surfaces which are extremals of the Chern-Simons action correspond
only to what stationary phase approximation gives when vacuum functional is
the product of exponent of Kähler function resulting from Dirac determinant
and an imaginary exponent of Chern-Simons action whose coefficient is propor-
tional to the central charge of Kac-Moody algebras associated with CP2 degrees
of freedom.

One cannot exclude the possibility that 3-D light-like causal determinants
might be required by the general consistency of the theory. The identification of
the exponent of Kähler function as Dirac determinant remains a viable hypoth-
esis for this option. ”Off mass shell” breaking of super-conformal symmetries is
implied since modified Dirac equation implies the conservation of super confor-
mal currents only when CP2 projection is at most 2-dimensional.

3.2.4 Some problems of TGD as almost-topological QFT and their
resolution

There are some problems involved with the precise definition of the quantum
TGD as an almost-topological QFT at the partonic level and the resolution
of these problems leads to an unexpected connection between cosmology and
parton level physics.

1. Three problems

The proposed view about partonic dynamics is plagued by three problems.

1. The definition of supercanonical and super-Kac-Moody charges in M4

degrees of freedom poses a problem. These charges are simply vanishing
since M4 coordinates do not appear in field equations.

2. Classical field equations for the C-S action imply that this action vanishes
identically which would suggest that the dynamics does not depend at
all on the value of k. The central extension parameter k determines the
over-all scaling of the eigenvalues of the modified Dirac operator. 1/k-
scaling occurs for the eigenvalues so that Dirac determinant scales by a
finite power kN if the number N of the allowed eigenvalues is finite for the
algebraic extension considered. A constant Nlog(k) is added to the Kähler
function and its effect seems to disappear completely in the normalization
of states.

3. The general picture about Jones inclusions and the possibility of sepa-
rate Planck constants in M4 and CP2 degrees of freedom suggests a close
symmetry between M4 and CP2 degrees of freedom at the partonic level.
Also in the construction of the geometry for the world of classical worlds
the symplectic and Kähler structures of both light-cone boundary and
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CP2 are in a key role. This symmetry should be somehow coded by the
Chern-Simons action.

2. A possible resolution of the problems

A possible cure to the above described problems is based on the modification
of Kähler gauge potential by adding to it a gradient of a scalar function Φ with
respect to M4 coordinates.

1. This implies that super-canonical and super Kac-Moody charges in M4

degrees of freedom are non-vanishing.

2. Chern-Simons action is non-vanishing if the induced CP2 Kähler form is
non-vanishing. If the imaginary exponent of C-S action multiplies the
vacuum functional, the presence of the central extension parameter k is
reflected in the properties of the physical states.

3. The function Φ could code for the value of k(M4) via a proportionality
constant

Φ =
k(M4)
k(CP2)

Φ0 , (28)

Here k(CP2) is the central extension parameter multiplying the Chern-
Simons action for CP2 Kähler gauge potential. This tricks does just what
is needed since it multiplies the Noether currents and super currents as-
sociated with M4 degrees of freedom with k(M4) instead of k(CP2).

The obvious breaking of U(1) gauge invariance looks strange at first but it
conforms with the fact that in TGD framework the canonical transformations
of CP2 acting as U(1) gauge symmetries do not give to gauge degeneracy but
to spin glass degeneracy since they act as symmetries of only vacuum extremals
of Kähler action.

3. How to achieve Lorentz invariance?

Lorentz invariance fixes the form of function Φ uniquely as the following
argument demonstrates.

1. Poincare invariance would be broken in any case for a given light-cone
in the decomposition CH = ∪mCHm of the configuration space to sub-
configuration spaces associated with light-cones at various locations of
M4 but since the functions Φ associated with various light cones would
be related by a translation, translation invariance would not be lost.

2. The selection of Φ should not break Lorentz invariance. If Φ depends on
the Lorentz proper time a only, this is partially achieved. Momentum
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currents would be proportional to mk and become light like at the bound-
ary of the light-cone. This fits very nicely with the interpretation that
the matter emanates from the tip of the light cone in Robertson-Walker
cosmology.

Lorentz invariance poses even stronger conditions on Φ.

1. Partonic four-momentum defined as Chern-Simons Noether charge is defi-
nitely not conserved and must be identified as gravitational four-momentum
whose time average corresponds to the conserved inertial four-momentum
assignable to the Kähler action [D3, D5]. This identification is very ele-
gant since also gravitational four-momentum is well-defined although not
conserved.

2. Lorentz invariance implies that mass squared is constant of motion. Hence
it is interesting to look what expression for Φ results if the gravitational
mass defined as Noether charge for C-S action is conserved. The compo-
nents of the four-momentum for Chern-Simons action are given by

P k =
∂LC−S
∂(∂αa)

mkl∂mla .

Chern-Simons action is proportional to Aα = Aa∂αa so that one has

P k ∝ ∂aΦ∂mka = ∂aΦ
mk

a
.

The conservation of gravitational mass gives Φ ∝ a. Since CP2 projec-
tion must be 2-dimensional, M4 projection is 1-dimensional so that mass
squared is indeed conserved.

Thus one could write

Φ =
k(M4)
k(CP2)

xθ(a)
a

R
, (29)

where R the radius of geodesic sphere of CP2 and x a numerical constant
which could be fixed by quantum criticality of the theory. Chern-Simons
action density does not depend on a for this choice and this independence
guarantees that the earlier ansatz satisfies field equations. The presence of
the step function θ(a) tells that Φ is non-vanishing only inside light-cone
and gives to the gauge potential delta function term which is non-vanishing
only at the light-cone boundary and makes possible massless particles.

3. If M4 projection is 1-dimensional, only homologically charged partonic
3-surfaces can carry gravitational four-momentum. This is not a problem
since M4 projection can be 2-dimensional in the general case. For CP2
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type extremals, ends of cosmic strings, and wormhole contacts the non-
vanishing of homological charge looks natural. For wormhole contacts 3-D
CP2 projection suggests itself and is possible only if one allows also quan-
tum fluctuations around light-like extremals of Chern-Simons action. The
interpretation could be that for a vanishing homological charge boundary
conditions force X4 to approach vacuum extremal at partonic 3-surfaces.

This picture does not fit completely with the picture about particle massi-
vation provided by CP2 type extremals. Massless partons must correspond to
3-surfaces at light-cone boundary in this picture and light-likeness allows only
linear motion so that inertial mass defined as average must vanish.

5. Comment about quantum classical correspondence

The proposed general picture allows to define the notion of quantum clas-
sical correspondence more precisely. The identification of the time average of
the gravitational four-momentum for C-S action as a conserved inertial four-
momentum associated with the Kähler action at a given space-time sheet of a
finite temporal duration (recall that we work in the zero energy ontology) is the
most natural definition of the quantum classical correspondence and generalizes
to all charges.

In this framework the identification of gravitational four-momentum currents
as those associated with 4-D curvature scalar for the induced metric of X4 could
be seen as a phenomenological manner to approximate partonic gravitational
four-momentum currents using macroscopic currents, and the challenge is to
demonstrate rigorously that this description emerges from quantum TGD.

For instance, one could require that at a given moment of time the net
gravitational four-momentum of Int(X4) defined by the combination of the
Einstein tensor and metric tensor equals to that associated with the partonic
3-surfaces. This identification, if possible at all, would certainly fix the values
of the gravitational and cosmological constants and it would not be surprising
if cosmological constant would turn out to be non-vanishing.

3.2.5 The eigenvalues of D as complex square roots of conformal
weight and connection with Higgs mechanism?

An alternative interpretation for the eigenvalues of D emerges from the TGD
based description of particle massivation. The eigenvalues could be interpreted
as complex square roots of conformal weights in the sense that |λ|2 would have
interpretation as a conformal weight. There is of course the possibility of nu-
merical constant of proportionality.

The physical motivation for the interpretation is that λ is in the same role
as the mass term in the ordinary Dirac equation and thus indeed square root of
mass squared proportional to the conformal weight. The vacuum expectation of
Higgs would correspond to that for λ and Higgs contribution to the mass squared
would correspond to the p-adic thermodynamical expectation value 〈|λ|2〉 [A9].
Additional contributions to mass squared would come from super conformal and
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modular degrees of freedom. The interpretation of the generalized eigenvalue as
a Higgs field is also natural because the generalized eigen values of the modified
Dirac operator can depend on position.

3.2.6 Super-conformal symmetries

The topological character of the solutions spectrum makes possible the expected
and actually even larger conformal symmetries in X2 degrees of freedom. Arbi-
trary diffeomorphisms of CP2, including local SU(3) and its holomorphic coun-
terpart, act as symmetries of the non-vacuum solutions. Also the canonical
transformations of CP2 inducing a U(1) gauge transformation are symmetries.
More generally, the canonical transformations of δM4

±×CP2 define configuration
space symmetries.

Diffeomorphisms of M4 respecting the light-likeness condition define Kac-
Moody symmetries. In particular, holomorphic deformations of X3

l defined in
E2 factor of M2 × E2 compensated by a hyper-analytic deformation in M2

degrees taking care that light-likeness is not lost, act as symmetry transforma-
tions. This requires that M2 and E2 contributions of the deformation to the
induced metric compensate each other.

The fact that the modified Dirac equation reduces to a one-dimensional
Dirac equation allows the action of Kac-Moody algebra as a symmetry algebra
of spinor fields. In M4 degrees of freedom X2-local SL(2,C) acts as super-
conformal symmetries and extends the SU(2) Kac-Moody algebra of N = 4
super-conformal algebra to SL(2, C). The reduction to SU(2) occurs naturally.
These symmetries act on all spinor components rather than on the second spinor
chirality or right handed neutrinos only. Also electro-weak U(2) acts as X2-
local Kac-Moody algebra of symmetries. Hence all the desired Kac-Moody
symmetries are realized.

The action of Super Kac-Moody symmetries corresponds to the addition of
a linear combination of zero modes of D to a given eigen mode. This defines
a symmetry if zero modes satisfy the additional condition NΨ = 0 implied
by Ψ = NΨ0 in turn guaranteed by the already described conditions. These
symmetries are super-conformal symmetries with respect to z and z.

The radial conformal symmetries generalize the dynamical conformal sym-
metries characterizing CP2 type vacuum extremals and could be regarded as
dynamical conformal symmetries defining the spectrum of super-canonical con-
formal weights assigned originally to the radial light-like coordinate of δM4

±.
It deserves to be emphasized that the topological QFT character of TGD at
fundamental level broken only by the light-likeness of X3

l carrying information
about H metric makes possible these symmetries.

N = 4 super-conformal symmetry corresponding to the maximal representa-
tion with the group SU(2)×SU(2)×U(1) acting as rotations and electro-weak
symmetries on imbedding space spinors is in question. This symmetry is broken
for light-like 3-surfaces not satisfying field equations. It seems that rotational
SU(2) can be extended to the full Lorentz group.
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3.2.7 How the super-conformal symmetries of TGD relate to the
conventional ones?

The representation of super-symmetries as an addition of anticommuting zero
modes to the second quantized spinor field defined by the superposition of non-
zero modes of the modified Dirac equation differs radically from the standard
realization based on the replacement of the world sheet or target space coor-
dinates with super-coordinates. Also the fundamental role of the generalized
eigen modes of the modified Dirac operator is something new and absolutely es-
sential for the understanding of how super-conformal invariance is broken: the
breaking of super-symmetries is indeed the basic problem of the super-string
theories.

Since the spinor fields in question are not Majorana spinors the standard
super-field formalism cannot work in TGD context. It is however interesting
to look to what extent this formalism generalizes and whether it allows some
natural modification allowing to formally integrate the notions of the bosonic
action and corresponding modified Dirac action.

1. One can consider the formal introduction of super fields by replacing of
X3
l coordinates by super-coordinates requiring the introduction of anti-

commuting parameters θ and θ transforming as H-spinors of definite chi-
rality, which is not consistent with Majorana condition. Using real coor-
dinates xα for X3

l , one would have

xα → Xα = xα + θΓ̂αΨ + ΨΓ̂αθ ,

Super-conformal symmetries would add to θ a zero mode with Grassmann
number valued coefficient. The replacement zα → Xα for the arguments
of CP2 and M4 coordinates would super-symmetrize the field C-S action
density. As a matter fact, the super-symmetrization is non-trivial only in
radial degree of freedom since only Γ̂r is non-vanishing.

2. Also imbedding space coordinates could be formally replaced with super-
fields using a similar recipe and super-symmetries would act on them.
The topological character of Chern-Simons action would allow the super-
symmetries induced by the translation of θ by an anticommuting zero
mode as formal symmetries at the level of the imbedding space. In both
cases it is however far from clear whether the formal super-symmetrization
has any real physical meaning.

3. The notion of super-surface suggests itself and would mean that imbedding
space Θ parameters are functions of single θ parameter assignable withX3

l .
A possible representation of super-part of the imbedding is a generalization
of ordinary imbedding in terms of constraints Hi)(hk) = 0, i = 1, 2....
Symmetries allow only linear functions so that one would have

cαi)(r, z, z)Θα = 0 .
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A hyper-plane in the space of theta parameters is obtained. Since only
single theta parameter is possible in integral the number of constraints
is seven and one obtains the modified Dirac action from the super-space
imbedding.

Consider next the basic difficulty and its resolution.

1. The super-conformal symmetries do not generalize to the level of action
principle in the standard sense of the word and the reason is the failure
of the Majorana property forced by the separate conservation of quark
and lepton numbers so that the standard super-space formalism remains
empty of physical content.

2. One can however consider the modification of the integration measure∏
i dθidθi over Grassmann parameters by replacing the product of bilinears

with

dθγ1dθdθγ2dθ...

analogous to the product dx1∧dx2... (where γk would be gamma matrices
of the imbedding space) transforming like a pseudoscalar. It seems that
the replacement of product with wedge product leads to a trivial theory.
This formalism could work for super fields obeying Weyl condition instead
of Majorana condition and it would be interesting to find what kind of
super-symmetric field theories it would give rise to.

The requirement that the number of Grassmann parameters given by 2D
is the number of spinor components of definite chirality (counting also
conjugates) given by 2 × 2D/2−1 gives critical dimension D = 8, which
suggest that this kind of quantum field theory might exist. As found,
the zero modes which are not of form Ψ = NΨ0 do not generate super-
conformal symmetries in the strict sense of the word and might correspond
to light particles. One could ask whether chiral SUSY in M4×CP2 might
describe the low energy dynamics of corresponding light parton states.
General arguments do not however support space-time super-symmetry.

3. Because of the light-likeness the super-symmetric variant of C-S action
should involve the modified gamma matrices Γ̂α instead of the ordinary
ones. Since only Γ̂r is non-vanishing for the extremals of C-S action
and since super-symmetrization takes place for the light-like coordinate r
only, the integration measure must be defined as dθΓ̂rdθ, with θ perhaps
assignable to a fixed covariantly constant right-handed neutrino spinor
and Γ̂r the inverse of Γ̂r. This action gives rise to the modified Dirac
action with the modified gamma matrices emerging naturally from the
Taylor expansion of the C-S action in powers of super-coordinate.
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3.3 Why the cutoff in the number superconformal weights
and modes of D is needed?

Two kinds of cutoffs are necessary in the number theoretic approach involving
a hierarchy of algebraic extensions of rationals with increasing algebraic dimen-
sion.

3.3.1 Spatial cutoff realized in terms of number theoretical braids

The first cutoff corresponds to a spatial discretization selecting a subset of al-
gebraic points of the partonic 2-surface X2 as a subset of the points common
to the real and p-adic variants of X2 obeying the same algebraic equations.
Almost topological field theory property allows to assume algebraic equations
and also quantum criticality and generalization of the imbedding space concept
are crucial for achieving the cutoff as a completely inherent property of X2.

3.3.2 Cutoff in the number of super-canonical conformal weights

It is not quite clear whether the number of radial conformal weights should be
finite or not. The assumption HFF property is realized also in configuration
space degrees of freedom would motivate finiteness for the number of conformal
weights and would effectively replace the world of the classical worlds with a
finite-D space. Also super-symmetry suggests the same. Finiteness would be
guaranteed if the ζ function involved characterizes partonic 2-surface and is
labelled by p-adic prime: this would also guarantee that zeros of ζ are algebraic
numbers. If the zeta function in question characterizes the spectrum of modified
Dirac operator and the number of eigenvalues is finite then this goal is achieved.
In the case of Riemann Zeta one would be forced to use cutoff due related to
the algebraic extension of p-adic numbers used and to assume that zeros and
even more general arguments are algebraic numbers.

3.3.3 Cutoff in the number of generalized eigenvalues of the modified
Dirac operator

Second cutoff corresponds to a cutoff in the number of generalized eigenvalues
of the modified Dirac operator and also now almost TQFT provides the needed
flexibility.

1. If the generalized eigenvalues are interpreted as Higgs field then the num-
ber of eigenvalues is just one and also orthogonality condition for the
modes is achieved without posing ad hoc correlations between longitudi-
nal and transversal degrees of freedom.

2. A priori the dependence of the eigenmodes on transversal degrees of free-
dom of X2 is arbitrary. This looks strange on basis of experience with
quantum field theory and would imply non-stringy anti-commutation rela-
tions. Holomorphic dependence however leads to stringy anti-commutations.
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3. Anti-commutativity at braid points only would be highly satisfactory since
it would allow to avoid delta functions but would require that the trans-
verse degrees of freedom reduce to a finite number of modes. The reduc-
tion of this cutoff to inherent properties of X2 remains to be understood.
What is clear is that the number of conformal modes in transversal de-
grees of freedom corresponds essentially to the number of points in the
braid and the precise realization of this cutoff remains to be understood.
Since this cutoff relates to finite measurement resolution, the idea that
non-commutative S2

II coordinates provides an elegant manner to realize
the anti-commutativity at finite number of points.

It is natural to choose the modes to be S2
II partial waves with a well defined

color isospin quantum numbers I, I3. The Abelianity of the color holonomy
group of induced spinor connection suggests also color confinement in weak
sense meaning vanishing of I3 and Y for the physical states.

Since cutoff hierarchy must relate closely to the hierarchy of quantum phases,
it seems natural to assume that for given value of q = exp(i2π/nb) only the an-
gular momentum values I ≤ nb are allowed. Here nb is the order of the maximal
cyclic subgroup of Gb involved with the Jones inclusion. In the similar man-
ner one can introduce cutoff for S2 partial waves in δM4

± as cutoff l ≤ nb for
angular momentum. Both cutoffs are needed in the definition of configuration
space Hamiltonians and super-Hamiltonians allowing to approximate configura-
tion space with a finite-dimensional space which is obviously in spirit with the
hyper-finiteness.

Cutoffs imply that n-point functions are finite and non-trivial since the anti-
commutators of second quantized induced spinor fields are non-local and delta
function singularity is smoothed out. Non-locality implies that vertices are
non-trivial and pair creation becomes possible. It is of course essential that
the dynamics of the space-time interior induces correlations between different
partonic 2-surfaces.

That this picture can give rise to the basic vertices of quantum theory seems
clear. For instance, suppose that bosons can be assigned to the fermionic repre-
sentation of Hamiltonians and fermions by super Hamiltonians. The idea would
be that right handed neutrino represents vacuum state to which imbedding
space gamma matrices act like creation operators. The vertex for the emission
of boson would involve sum of vacuum expectation values for the product of
the operators ΨJAΨ(x), νJBΨ(y) ΨJCν(z), JA = jkAΓk with various choices of
arguments. Anticommutation relations would give sum over the values of the
quantity νJA(x)JB(y)JC(z)ν multiplied by ”wave functions” coming the modes
of Ψ. Summation would be over the discrete set of points of the number theo-
retical braid. A discretized version of stringy scattering amplitude would be in
question.
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3.3.4 Attempt to form an overall view

This approach leads to both a hierarchy of discretized theories and continuum
theory. Continuum theory indeed seems to be completely well defined and would
correspond to string theory with free fermions with N = 4 super-conformal
symmetry as far vertices are considered.

The interpretation encouraged by Jones inclusion hierarchy is that the limit
n → ∞ for quantum phase q = exp(i2π/n) is not equivalent with the exact
real theory based on stringy amplitudes defined using 1-D integrals over the
inverse image of the image of the critical line. The natural interpretation for
the stringy option without discretization could be in terms of Jones inclusions
with group SU(2) and classified by extended ADE diagrams relating to the
monodromies of the theory. This interpretation would also conform with the
full Kac-Moody invariance whereas for quantum version infinite-dimensional
symmetries are reduced to finite-dimensional ones. Note that quantum trace
should be equivalent with the condition that the trace of the unit matrix is
unity for hyper-finite factors of type II1.

The number theoretic cutoff hierarchy for the allowed zeros of ζ relates
closely to the hierarchy of finite-dimensional extensions of p-adic numbers and
to the quantum criticality realized in terms of the generalized imbedding space.
This hierarchy of extensions defines a hierarchy of number theoretic braids with
an increasing number of strands since the number of points in the intersection
between real and corresponding p-adic surface increases and does also the num-
ber of allowed zeros. Also the hierarchy of finite-dimensional approximations
for the inclusions of hyperfinite factors of type II1 can be visualized in terms
of a hierarchy of braid inclusions with increasing number of braids and is de-
scribed in terms of Temperley-Lieb algebras. This hierarchy of approximate
representations of the inclusion means the replacement of the Beraha number
Bn = 4cos2(π/n) by a rational number defining the ratio of dimensions of two
subsequent finite-dimensional algebras in the hierarchy. Hence the number the-
oretic braid hierarchy could provide a concrete representation for the hierarchy
of approximations for the hyper-finite factors of type II1 and their Jones inclu-
sions in terms of inclusions of Temperley Lieb algebras assignable to the number
theoretic braids. Physics itself would define this sequence of approximations via
p-adicization which basically means space-time realization of cognitive repre-
sentations.

3.4 The spectrum of Dirac operator and radial conformal
weights from physical and geometric arguments

The identification of the generalized eigenvalues of the modified Dirac operator
as Higgs field suggests the possibility of understanding the spectrum of D purely
geometrically by combining physical and geometric constraints.

The standard zeta function associated with the eigenvalues of the modi-
fied Dirac action is the best candidate concerning the interpretation of super-
canonical conformal weights as zeros of ζ. This ζ should have very concrete
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geometric and physical interpretation related to the quantum criticality if these
eigenvalues have geometric meaning based on geometrization of Higgs field.

Before continuing it its convenient to introduce some notations. Denote the
complex coordinate of a point of X2 w, its H = M4 × CP2 coordinates by
h = (m, s), and the H coordinates of its R+ × S2

II projection by hc = (r+, sII).

3.4.1 Generalized eigenvalues

The generalized eigenvalue equation defined by the modified Dirac equation is
a differential equation involving only the derivative with respect to r. Hence
the eigenvalues λ can depend on X2 coordinate w and on the coordinates of
the critical manifold R+ × S2

II via the dependence of w these. As a function of
R+×S2

II coordinates they would be many-valued functions of these coordinates
since several points of X2 can project at given point of R+ × S2

II .
The replacement of the ordinary eigenvalues with continuous functions would

be a space-time analog for generalized eigenvalues identified as Hermitian op-
erators (or equivalently, their spectra) inspired by the quantum measurement
theory based on inclusions of hyper-finite factors of type II1 [A8]. The replace-
ment of these functions with their values in a discrete set defined by number
theoretic braid would in turn be the counterpart for the finite measurement
resolution.

The interpretation of eigenvalue as a complex Higgs field gives the most
concrete interpretation for the generalized eigenvalues. Of course, only single
eigenvalue would be realized in this kind of situation. Also the requirement
that different modes are orthogonal with respect to the inner product at the
partonic 2-surface allows only single generalized eigenvalue. Hence the modes
in transversal degrees of freedom would code for physics as in the usual QFT.

This interpretation does not kill the idea about eigenvalues as inverses of
zeta function λ = ζ−1(z), S2

II . The point is that one can regard X2 as a
covering of S2 and assign different branches of ζ−1 to the different sheets of
covering. Different branches of ζ−1(z), call them ζ−1

k (z), would combine to
single function of the coordinate w of X2. In the case of Riemann zeta the
corresponding construction would replaced complex plane with its infinite-fold
covering.

3.4.2 General definition of Dirac determinant

The first guess is that Dirac determinant can defined as a product of determi-
nants assignable to the points z = zk of the number theoretic braids:

det(D) =
∏
zk)

det(D(zk)) . (30)

The determinant det(D(z)) at point z of S2 would be defined as the product of
the eigenvalues λ(z) at points associated with the number theoretic braids.
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det(D)(zk) =

[∏
i

ζ−1
i (zk)

]n(zk)

, (31)

n(zk) is the number of strands in the number theoretical braid of associated with
zk. Higgs interpretation would imply that only single value of Higgs contributes
for a given point of X2. Dirac determinant must be an algebraic number. This
is the case if the total number of points of number theoretic braids involved is
finite. It turns out that this guess is quite not general enough: it turns out that
actual Dirac determinant must be identified as a ratio of two determinants.

3.4.3 Interpretation of eigenvalues of D as Higgs field

The eigenvalues of the modified Dirac operator have a natural interpretation as
Higgs field which vanishes for the unstable extrema of Higgs potential. These
unstable extrema correspond naturally to quantum critical points resulting as
intersection of M4 resp. CP2 projection of the partonic 2-surface X2 with R+

resp. S2
II .

Quantum criticality suggests that the counterpart of Higgs potential could
be identified as the modulus square of ζ:

V (H(s)) = −|H(s)|2 . (32)

which indeed has the points s with V (H(s)) = 0 as extrema which would be un-
stable in accordance with quantum criticality. The fact that for ordinary Higgs
mechanism minima of V are the important ones raises the question whether
number theoretic braids might more naturally correspond to the minima of V
rather than intersection points with S2. This turns out to be the case. It will
also turn out that the detailed form of Higgs potential does not matter: the
only thing that matters is that |V | is monotonically decreasing function of the
distance from the critical manifold.

3.4.4 Purely geometric interpretation of Higgs

Geometric interpretation of Higgs field suggests that critical points with van-
ishing Higgs correspond to the maximally quantum critical manifold R+ × S2

II .
The value of H should be determined once h(w) and R+×S2

II projection hc(w)
are known. |H| should increase with the distance between these points. The
question is whether one can assign to a given point pair (h(w), hc(w)) naturally
a value of H. The first guess is that value of H is most determined by the
shortest piece of the geodesic line connecting the points which is a product of
geodesics of δM4

+ and CP2.
This guess need not be quite correct. An alternative guess is that M4 pro-

jection is indeed geodesic but that CP2 projection extremizes its length sub-
ject to the constraint that the absolute value of the phase defined by the one-
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dimensional Kähler action
∫
Aµdx

µ is minimized: this point will be discussed
below.

The value should be in general complex and invariant under the isometries
of δH affecting h and hc. The minimal distance d(h, hc) between the two points
constrained by extremal property of phase would define the first candidate for
the modulus of H.

The phase factor should relate close to the Kähler structure of CP2 and
one possibility would be the non-integrable phase factor U(s, sII) defined as
the integral of the induced Kähler gauge potential along the geodesic line in
question. Hence the first guess for the Higgs would be as

H(w) = d(h, hc)× U(s, sII) ,

d(h, hc) =
∫ hc

h

ds , U(s, sII) = exp

[
i

∫ s1

s

Akds
k

]
. (33)

This gives rise to a holomorphic function in X2 the local complex coordinate
of X2 is identified as w = d(h, hs)U(s, sII) so that one would have H(w) = w
locally. This view about H would be purely geometric.

One can ask whether one should include to the phase factor also the phase
obtained using the Kähler gauge potential associated with S2

r having expression
(Aθ, Aφ) = (k, cos(θ)) with k even integer from the requirement that the non-
integral phase factor at equator has the same value irrespective of whether it
is calculated with respect to North or South pole. For k = 0 the contribution
would be vanishing. The value of k might correlate directly with the value of
quantum phase. The objection against inclusion of this term is that Kähler
action defining Kähler function should contain also M4 part if this term is
included. If this inclusion is allowed then internal consistency requires also the
extremization of

∫
Aµdx

µ so that geodesic lines are not allowed.
In each coordinate patch Higgs potential could be simply the quadratic func-

tion V = −ww. Negative sign is required by quantum criticality. As noticed
any monotonically increasing function of V works as well since the minima of
the potential remain unaffected. Potential could indeed have minima as mini-
mal distance of X2 point from R+ × S2

II . Earth’s surface with zeros as tops of
mountains and bottoms of valleys as minima would be a rather precise visual-
ization of the situation for given value of r+. Mountains would have a shape of
inverted rotationally symmetry parabola in each local coordinate system.

3.4.5 Consistency with the vacuum degeneracy of Kähler action and
explicit construction of preferred extremals

An important constraint comes from the condition that the vacuum degeneracy
of Kähler action should be understood from the properties of the Dirac deter-
minant. In the case of vacuum extremals Dirac determinant should have unit
modulus.
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Suppose that the space-time sheet associated with the vacuum parton X2 is
indeed vacuum extremal. This requires that also X3

l is a vacuum extremal: in
this case Dirac determinant must be real although it need not be equal to unity.
The CP2 projection of the vacuum extremal belongs to some Lagrangian sub-
manifold Y 2 of CP2. For this kind of vacuum partons the ratio of the product of
minimal H distances to corresponding M4

± distances must be equal to unity, in
other words minima of Higgs potential must belong to the intersection X2∩S2

II

or to the intersection X2 ∩R+ so that distance reduces to M4 or CP2 distance
and Dirac determinant to a phase factor. Also this phase factor should be trivial.

It seems however difficult to understand how to obtain non-trivial phase in
the generic case for all points if the phase is evaluated along geodesic line in
CP2 degrees of freedom. There is however no deep reason to do this and the
way out of difficulty could be based on the requirement that the phase defined
by the Kähler gauge potential is evaluated along a curve either minimizing the
absolute value of the phase modulo 2π.

One must add the condition that curve is not shorter than the geodesic
line between points. For a given curve length s0 the action must contain as a
Lagrange multiplier the curve length so that the action using curve length s as
a coordinate reads as

S =
∫
Asds+ λ(

∫
ds− s0) . (34)

This gives for the extremum the equation of motion for a charged particle with
Kähler charge QK = 1/λ:

D2sk

ds2
+

1
λ
× Jkl

dsl

ds
= 0 ,

D2mk

ds2
= 0 . (35)

The magnitude of the phase must be further minimized as a function of curve
length s.

If the extremum curve in CP2 consists of two parts, first belonging to X2
II

and second to Y 2, the condition is certainly satisfied. Hence if X2
CP2
× Y 2 is

not empty, the phases are trivial. In the generic case 2-D sub-manifolds of CP2

have intersection consisting of discrete points (note again the fundamental role
of 4-dimensionality of CP2). Since S2

II itself is a Lagrangian sub-manifold, it
has especially high probably to have intersection points with S2

II . If this is not
the case one can argue that X3

l cannot be vacuum extremal anymore.
Radial conformal invariance of δM4

± raises the question whether δM4
± geodesics

should be defined by allowing rM (s) to be arbitrary rather than constant. The
minimization of δM4

± distance would favor geodesics for which rM (s) decreases
as fast as possible so that one has a light-like geodesics going directly to the tip
of δM4

±. Therefore this option does not seem to work.
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The construction gives also a concrete idea about how the 4-D space-time
sheet X4(X3

l ) becomes assigned with X3
l . The point is that the construction

extends X2 to 3-D surface by connecting points of X2 to points of S2
II using

the proposed curves. This process can be carried out in each intersection of X3
l

and M4
+ shifted to the direction of future. The natural conjecture is that the

resulting space-time sheet defines the 4-D preferred extremum of Kähler action.
The most obvious objection is that this construction might not work for

cosmic strings of form X2×S2
I , where S2

I is a homologically non-trivial geodesic
sphere of CP2. In this case X2 would correspond to string ends, copies of S2

I

at different points of δM4
±. There seems to be however no real problem. If

S2
I ∩ S2

II is not empty, the orbits representing motion in the induced Kähler
gauge field could simply define a flow at S2

I connecting the points of S2
I to one

of the intersection points. Since geodesic manifold is in question one expects
that the orbits indeed belong to S2

I and cosmic string is obtained. Also a flow
with several sources and sinks is possible. Situation should be the same for
complex 2-sub-manifolds of CP2. The 3-D character of the resulting surface
would be due to the fact that δM4

± projections of the orbits are not points.
If the second end of the string is at R+ string and has the same value of rM
coordinate, single string would result. Otherwise one would obtain two strings
with second end point at R+ with the same value of rM .

3.4.6 About the definition of the Dirac determinant and number
theoretic braids

The definition of Dirac determinant should be independent of the choice of com-
plex coordinate for X2 and local complex coordinate implied by the definition
of Higgs is a unique choice for this coordinate. The physical intuition based
on Higgs mechanism suggests that apart from normalization factor the Dirac
determinant should be defined simply as product of the eigenvalues of D, that
is those of Higgs field, associated with the number theoretic braids.

If only single kind of braid is allowed then the minima of Higgs field define the
points of the braid very naturally. The points in R+ × S2

II cannot contribute
to the Dirac determinant since Higgs vanishes at the critical manifold. Note
that at S2

II criticality Higgs values become real and the exponent of Kähler
action should become equal to one. This is guaranteed if Dirac determinant is
normalized by dividing it with the product of δM4

± distances of the extrema
from R+. The value of the determinant would equal to one also at the limit
R+ × S2

II .
One would define the Dirac determinant as the product of the values of Higgs

field over all minima of local Higgs potential

det(D) =
∏
kH(wk)∏
kH0(wk)

=
∏
k

wk
w0
k

. (36)

Here w0
k are M4 distances of extrema from R+. Equivalently: one can identify

the values of Higgs field as dimensionless numbers wk/w0
k. The modulus of Higgs
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field would be the ratio of H and M4
± distances from the critical sub-manifold.

The modulus of the Dirac determinant would be the product of the ratios of H
and M4 depths of the valleys.

This definition would be general coordinate invariant and independent of
the topology of X2. It would also introduce a unique conformal structure in
X2 which should be consistent with that defined by the induced metric. Since
the construction used relies on the induced metric this looks natural. The
number of eigen modes of D would be automatically finite and eigenvalues
would have purely geometric interpretation as ratios of distances on one hand
and as masses on the other hand. The inverse of CP2 length defines the natural
unit of mass. The determinant is invariant under the scalings of H metric as
are also Kähler action and Chern-Simons action. This excludes the possibility
that Dirac determinant could also give rise to the exponent of the area of X2.

Number theoretical constraints require that the numbers wk are algebraic
numbers and this poses some conditions on the allowed partonic 2-surfaces unless
one drops from consideration the points which do not belong to the algebraic
extension used.

3.4.7 About the detailed definition of number theoretic braids

Consider now the detailed definition of number theoretic braids. One can define
a pile X2

t of cross sections of X3
l ∩ (δM4

±,t × CP2), where δM4
±,t represents

δM4
± shifted by t in a preferred time direction defined by M2. In the same

manner one can decompose M2 to a pile of light-like geodesics R+,t defining
the quantization axis of angular momentum. For each value of t one obtains a
collection of minima of the ”Higgs field” λt in 3-dimensional space R+,t × S2

II .
The minima define orbits γ(t): (r+,i(t), sII(t)) in M2 × S2

II space.
One can consider braidings (or more generally tangles, two minima can dis-

appear in collision or can be created from vacuum) both in X3
l and at the level

of imbedding space.

1. Braids in X3
l

A braid in X3
l is obtained by considering the fate of points of X2t = 0 in X3

l

and by assigning a braiding to the minima of Higgs field in X3
l . Also the field

lines of Kähler magnetic field or of Kähler gauge potential on X3
l going through

the initial positions of Higgs minima can be considered. Since the construction
of the Higgs field involves induced Kähler gauge potential in an essential manner,
the braiding defined by the Kähler gauge potential could be consistent with the
time evolution for the positions of the minima of Higgs.

Recall that only topological rather than point-wise equivalence of the braids
is required. It is not clear how much these definition depend on the coordinates
used for X3

l . For instance, could one trivialize the braid by making a time
dependent coordinate change for X2? This requires that it is possible to define
global time coordinate whose coordinate lines correspond to field lines. This is
possible only if the flow satisfies additional integrability conditions [D1].
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2. Braidings defined by imbedding space projections

One can define braidings also by the projections to the heavenly spheres
S2
II of CP2 and S2

r of δM4
±. A linear braid like structure is also obtained by

considering the projections of Higgs minima in M2.

1. The simplest option is the identification of the braid as the projections of
the orbits of the minima of Higgs field to S2

II or S2
r (for various values of

t). This seems to be the most elegant choice. One could decompose the
braid to sub-braids such that each initial value r+,i(0) would define its
own braid in S2

II or S2
r . Also each point of S2

II or S2
r could define its own

sub-braid.

2. Factoring quantum field theories defined in M2 [24, 34] suggest a further
definition of a braid like structure based on the projections of Higgs min-
ima to M2. The braid like structure would result from the motion of braid
points with different velocities so that they would pass by each other. This
kind of pattern with constant velocities of particles describes scattering
in factoring quantum field theories defined in M2. The M2 velocities of
particles would not be constant now. S-matrix is almost trivial inducing
only a permutation of the initial state momenta and S-matrix elements
are mere phases. The interpretation is that each pass-by process induces
a time lag. At the limit when the velocities approach to zero or infin-
ity such that their ratios remain constant, S-matrix reduces to a braiding
S-matrix.

The Higgs minima contributing to the elements of S-matrix (or at least U-
matrix) should correspond to algebraic points of braids. This suggests that the
information about the braids comes from the minima of Higgs in X3

l rather
than X2

t so that only some values of t at each strand γ(t) give rise to physically
relevant braid points. The condition that the resulting numbers are algebraic
poses restrictions on X3

l as does also the condition that X3
l have also p-adic

counterparts. This does not of course mean the loss of braids. Note that the dis-
cretization allows to assign Dirac determinant and zeta function to any 3-surface
X3
l rather than only those corresponding to the maxima of Kähler function.

3.4.8 The identification of zeta function

The proposed picture supports the identification of the eigenvalues of D in
terms of a Higgs fields having purely geometric meaning. It also seems that
number theoretic braids must be identified as minima of Higgs potential in X2.
Furthermore, the braiding operation could be defined for all intersections of X3

l

defined by shifts M4
± as orbits of minima of Higgs potential. Second option is

braiding by Kähler magnetic flux lines.
The question is how to understand super-canonical conformal weights for

which the identification as zeros of a zeta function of some kind is highly sug-
gestive. The natural answer would be that the normalized eigenvalues of D
defines this zeta function as
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ζ(s) =
∑
k

(
H(wk)
H0(wk)

)−s . (37)

The number of eigenvalues contributing to this function would be finite and
H(wk)/H0(wk) should be rational or algebraic at most. ζ function would have
a precise meaning consistent with the usual assignment of zeta function to Dirac
determinant.

The case of Riemann Zeta inspires the question whether one should allow
only the moduli of the eigenvalues in the zeta or allow only real and positive
eigenvalues. The moduli of eigenvalues are not smaller than unity as is the
case also for Riemann Zeta. Real eigenvalues correspond to vanishing phase
and thus vanishing Chern-Simons action and unit eigenvalues to the quantum
critical points of S2

II .
The ζ function would directly code the basic geometric properties of X2

since the moduli of the eigenvalues characterize the depths of the valleys of the
landscape defined by X2 and the associated non-integrable phase factors. The
degeneracies of eigenvalues would in turn code for the number of points with
same distance from a given zero intersection point.

The zeros of the ζ function in turn define natural candidates for the super-
canonical conformal weights and their number would thus be finite in accordance
with the idea about inherent cutoff present also in configuration space degrees
of freedom. Super-canonical conformal weights would be functionals of X2. The
scaling of λ by a constant depending on p-adic prime factors out from the zeta so
that zeros are not affected: this is in accordance with the renormalization group
invariance of both super-canonical conformal weights and Dirac determinant.

The zeta function should exist also in p-adic sense. This requires that the
numbers λs at the points s of S2

II which corresponds to the number theoretic
braid are algebraic numbers. The freedom to scale λ could help to achieve this.

The conformal weights defined by the zeros of zeta would be constant. One
could however consider also the generalization of the super-canonical conformal
weights to functions of S2

II or S2
r coordinate although this is not necessary and

would spoil the simple group theoretical properties of the δH Hamiltonians.
The coordinate s appearing as the argument of ζ could be formally identified
as S2

II or S2
r coordinate so that generalized super-canonical conformal weights

could be interpreted geometrically as inverses of ζ−1(s) defined as a function in
S2
II or S2

r .
In this case also the notion of number theoretic braids defined as sets of

points for which X2
M4 projection intersects R+ at same point could make sense

for super-canonical conformal weights. This would require that the number for
the branches of ζ−1 is same as the number of points of braid.

3.4.9 The relationship between λ and Higgs field

The generalized eigenvalue λ(w) is only proportional to the vacuum expectation
value of Higgs, not equal to it. Indeed, Higgs and gauge bosons as elementary
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particles correspond to wormhole contacts carrying fermion and antifermion
at the two wormhole throats and must be distinguished from the space-time
correlate of its vacuum expectation as something proportional to λ. In the
fermionic case the vacuum expectation value of Higgs does not seem to be
even possible since fermions do not correspond to wormhole contacts between
two space-time sheets but possess only single wormhole throat (p-adic mass
calculations are consistent with this). Gauge bosons can have Higgs expectation
proportional to λ. The proportionality must be of form 〈H〉 ∝ λ/pn/2 if gauge
boson mass squared is of order 1/pn.

3.4.10 Possible objections related to the interpretation of Dirac de-
terminant

Suppose that that Dirac determinant is defined as a product of determinants
associated with various points zk of number theoretical braids and that these
determinants are defined as products of corresponding eigenvalues.

Since Dirac determinant is not real and is not invariant under isometries of
CP2 and of δM4

±, it cannot give only the exponent of Kähler function which is
real and SU(3)×SO(3, 1) invariant. The natural guess is that Dirac determinant
gives also the Chern-Simons exponential and possible phase factors depending
on quantum numbers of parton.

1. The first manner to circumvent this objection is to restrict the consid-
eration to maxima of Kähler function which select preferred light-like 3-
surfaces X3

l . The basic conjecture forced by the number theoretic univer-
sality and allowed by TGD based view about coupling constant evolution
indeed is that perturbation theory at the level of configuration space can
be restricted to the maxima of Kähler function and even more: the ra-
diative corrections given by this perturbative series vanish being already
coded by Kähler function having interpretation as analog of effective ac-
tion.

2. There is also an alternative way out of the difficulty: define the Dirac
determinant and zeta function using the minima of the modulus of the
generalized Higgs as a function of coordinates of X3

l so that continuous
strands of braids are replaced by a discrete set of points in the generic
case.

The fact that general Poincare transformations fail to be symmetries of Dirac
determinant is not in conflict with Poincare invariance of Kähler action since
preferred extremals of Kähler action are in question and must contain the fixed
partonic 2-surfaces at δM4

± so that these symmetries are broken by boundary
conditions which does not require that the variational principle selecting the
preferred extremals breaks these symmetries.

One can exclude the possibility that the exponent of the stringy action de-
fined by the area of X2 emerges also from the Dirac determinant. The point is
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that Dirac determinant is invariant under the scalings of H metric whereas the
area action is not.

The condition that the number of eigenvalues is finite is most naturally
satisfied if generalized ζ coding information about the properties of partonic
2-surface and expressible as a rational function for which the inverse has a finite
number of branches is in question.

3.4.11 How unique the construction of Higgs field is?

Is the construction of space-time correlate of Higgs as λ really unique? The
replacement of H with its power Hr, r > 0, leaves the minima of H invariant
as points of X2 so that number theoretic braid is not affected. As a matter
fact, the group of monotonically increasing maps real-analytic maps applied to
H leaves number theoretic braids invariant.

The map H → Hr scales Kähler function to its r-multiple, which could be
interpreted in terms of 1/r- scaling of the Kähler coupling strength. Also super-
canonical conformal weights identified as zeros of ζ are scaled as h → h/r and
Chern-Simons charge k is replaced with k/r so that at least r = 1/n might be
allowed.

One can therefore ask whether the powers of H could define a hierarchy of
quantum phases labelled by differen values of k and αK . The interpretation as
separate phases would conform with the idea that D in some sense has entire
spectrum of generalized eigenvalues.

3.5 Quantization of the modified Dirac action

The quantization of the modified Dirac action involves a fusion of various num-
ber theoretical ideas. Stringy picture need not be correct with string being
replaced number theoretic braids.

1. The first question is how M4 and CP2 braids relate. Since one assumes
that the data associated with both braids are independent, it seems nec-
essary to assume anti-commutativity between all points of X2 belonging
to some number theoretic braid.

2. There is no correlation between λ and eigenvalues associated with trans-
verse degrees of freedom as in the case of d’Alember operator. Therefore
an infinite number of eigen-modes of D for a given eigenvalue λ can be
considered unless one poses some additional conditions. This would mean
that one could have anti-commutativity for different points of X2 and anti-
commutators of Ψ and conjugate at same point would be proportional to
delta function. This would not conform with the stringy picture.

3. How could one obtain stringy anticommutations? The assumption that
modes are holomorphic or antiholomorphic would guarantee this since for-
mally only single coordinate variable would appear in Ψ. Anti-commutativity
along string requires that in a given sector of configuration space isometries
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commute with the selection of quantization axes for the isometry algebra
of the imbedding space. This might be justified by quantum classical cor-
respondence. The unitarity for Yang-Baxter matrices and unitarity of the
inner product for the radial modes r∆, ∆ = 1/2 + iy, is consistent with
the stringy option where y would now label those points of R+ which do
not correspond to z = 0. String corresponds to the ζ-image of the critical
line containing non-trivial zeros of zeta at the geodesic sphere of S2

r .

4. One could ask whether number theoretic braids might have deeper mean-
ing in terms of anticommutativity. This would be the case if the modes
in transversal degrees of freedom reduce to a finite number and are actu-
ally labelled by λ. This could be achieved if there is no other dependence
on transverse degrees of freedom than that coming through λ(z). Anti-
commutativity would hold true only at finite number of points and that
anti-commutators would be finite in general. This outcome would be very
nice.

5. An interesting question is whether the number theoretic braid could be
also described by introducing a non-commutativity of the complex coordi-
nate of X2 provided by S2

r or S2
II . This should replace anti-commutativity

in X2 with anti-commutativity for different points of the number theoretic
braid. The nice outcome would be the finiteness of anti-commutators at
same point.

The following is an attempt to formulate this general vision in a more detail
manner.

3.5.1 Fermionic anticommutation relations: non-stringy option

The fermionic anti-commutation relations must be consistent with the vac-
uum degeneracy and with the anti-commutation relations of configuration space
gamma matrices defining the matrix elements of configuration space metric be-
tween complexified Hamiltonians.

1. The bosonic representation of configuration space Hamiltonians is natu-
rally as Noether charges associated with Chern-Simons action:

HA =
∫
d2xπ0

kj
k
A ,

πα =
∂LC−S
∂αhk

. (38)

π0
k denotes bosonic canonical momentum density. Note that also fermionic

dynamics allows definition of Hamiltonians as fermionic charges) and this
would give rise to fermionic representation of super-canonical algebra.
Same applies to the super Kac-Moody algebra generators which super

59



Kac-Moody generators realized as X3-local isometries of the imbedding
space.

2. Super Hamiltonians identifiable as contractions of configuration space
gamma matrices with Killing vector fields of symplectic transformations
in CH can be defined as matrix elements of jkAΓk between νR and Ψ:

JKA ΓK ≡ ΓA = HS,A =
∫
d2xνRj

k
AΓkΨ . (39)

H†S,A is obtained by Hermitian conjugation.

3. The anti-commutation relations read as

{Ψ(x),ΓkΨ(y)} = π0
kJ

rsΣrsδ2(x, y) . (40)

Here Jrs denotes the degenerate Kähler form of δM4
+×CP2. What makes

these anti-commutation relations non-stringy is that anti-commutator is
proportional to 2-D delta function rather than 1-D delta function at 1-D
sub-manifold of X2 as in the case of conformal field theories. Hence one
would have 3-D quantum field theory with one light-like direction.

4. The matrix elements of configuration space metric for the complexified
Killing vector fields of symplectic transformations give the elements of
configuration space Kähler form and metric as

{Γ†A,ΓB} = iGA,B = JA,B = {HA, HB} = H[A,B] . (41)

3.5.2 Fermionic anti-commutation relations: stringy option

As already noticed, 2-dimensional delta function in the anti-commutation rela-
tions implies that spinor field is 2-D Euclidian free field rather than conformal
field. The usual stringy picture would require anti-commutativity only along
circle and nonlocal commutators outside this circle.

Also the original argument based on the observation that the points of CP2

parameterize a large class of solutions of Yang-Baxter equation suggests the
stringy option. The subset of commuting Yang-Baxter matrices corresponds to
a geodesic sphere S2 of CP2 and the subset of unitary Yang-Baxter matrices to
a geodesic circle of S2 identifiable as real line plane compactified to S2. Physical
intuition strongly favors unitarity.

Stringy choice is consistent with the identification of the configuration space
Hamiltonians as bosonic Noether charges only if Noether charges correspond to
closed but in general not exact 2-forms and thus reduce to integrals of a 1-form
over 1-dimensional manifold representing the discontinuity of the associated
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vector potential. That Noether charges would reduce to cohomology would
conform with almost TQFT property. This is indeed the case under conditions
which will be idenfied below.

1. The canonical momentum density associated with C-S action has the ex-
pression

πk = εαβ0(∂β [AαAk)− ∂α(AβAk] , (42)

and is thus a closed two-form. Note that the discontinuity of the monopole
like vector potential implies that the form in question is not exact.

2. Also the Hamiltonian densities

HA = jkAπk = Jkl∂lHAεαβ0 [∂β(AαAk)− ∂α(AβAk] (43)

should define closed forms

HA = jkAπk = εαβ0

[
∂β(AαAkJkl∂lHA)− ∂α(AβAk∂lJklHA

]
.(44)

3. This is not the case in general since the derivatives coming from jkA give
the term

εαβ0AαAkJ
klDr(∂lHA)∂βhr −AβAkJklDr(∂lHA)∂αhr . (45)

which does not vanish unless the condition

AkJ
klDr(∂lHA) = ∂rΦ (46)

holds true.

The condition is equivalent with the vanishing of the Poisson bracket be-
tween Hamiltonian and components of the Kähler potential:

∂kHAJ
kl∂lAr = 0 . (47)

This poses a restriction on the group of isometries of configuration space.
The restriction of Kähler potential to Ar is given by (Aθ, Aφ) = (0, cos(θ))
and Aφ generates rotations in z-direction. Hence only the Hamiltonians
commuting with Kähler gauge potential of δM4

±×CP2 at X2 would have
vanishing color isospin and presumably also vanishing color hyper charge
in the case of CP2 and vanishing net spin in case of δM4

+.
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4. The discontinuity of Φ would result from the topological magnetic monopole
character of the Kähler potential Ak in δM4

± × CP2.

5. Quantum classical correspondence suggests that quantum measurement
theory is realized at the level of the configuration space and induces a
decomposition of the configuration space to a union of sub-configuration
spaces corresponding to different choices of quantization axes of angu-
lar momentum and color quantum numbers. Hence the interpretation of
configuration space isometries in terms of a maximal set of commuting ob-
servables would make sense. Of course, also the canonical transformations
for which Hamiltonians do not reduce to 1-D integrals act as symmetries
although they do not possess super counterparts. They play same role
as Lorentz boosts whereas the super-symmetrizable part of the algebra is
analogous to the little group of Lorentz group leaving momentum invari-
ant. This means that complete reduction to string model type theory does
not occur even at the level of quantum states.

Consider now the basic formulas for the stringy option.

1. Hamiltonians can be expressed as

HA =
∫
dxAAkJ

kl∂lHA . (48)

whereA denotes the projection of Kähler gauge potential to the 1-dimensional
manifold in question.

2. The fermionic super-currents defining super-Hamiltonians and configura-
tion space gamma matrices would be given by

JKA ΓK ≡ ΓA = HS,A =
∫
dxνRj

k
AΓkΨ . (49)

H†S,A is obtained by Hermitian conjugation.

3. The anti-commutation relations would read as

{Ψ(x),ΓkΨ(y)} = AAkJ
kl∂lHAJ

rsΣrsδ(x, y) . (50)

The general formulas for the matrix elements of the configuration space
metric and Kähler form are as for the non-stringy option.
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3.5.3 String as the inverse image for image of critical line for zeros
of zeta

Number theoretical argument suggests that 1-D dimensional delta function cor-
responds to the point set for which δM4

+ projection corresponds to the line of
non-trivial zeros for ζ: z = ζ(1/2+ iy) that is intersection of X2 with R+. Thus
stringy anti-commutation would be along R+. In CP2 the discrete set of points
along which anticommutations would be given would be subset in S2

II . Anti-
commutativity on quantum critical set which corresponds to vacuum extremals
would be indeed very natural.

In case of Riemann zeta one must consider also trivial zeros at x = −2n,
n = 1, 2.... These would correspond to the integer powers of rn for which
the definition of inner product is problematic. Note however that for negative
powers −2n corresponding to zeros of ζ there are no problems if there is cutoff
r > r0.

The number theoretic counterpart of string would be most naturally a curve
whose S2

r projection belongs to the image of the critical line consisting of points
ζ(1/2+ iy). This image consist of the real axis of S2 interpreted as compactified
plane since ζ is real at the critical line. Note that in case of Riemann zeta also
real axis is mapped to the real line so that it gives nothing new. Also this
has a number theoretical justification since the basis r1/2+iy, where r could
correspond to the light-like coordinate of both δM4

± and partonic 3-surface,
forms an orthogonal basis with respect to the inner product defined by the
scaling invariant integration measure dx/x.

For number theoretical reasons which should be already clear, the values of y
would be restricted to y =

∑
k nkyk of imaginary parts of zeros of ζ. In the case

of partonic 3-surface this would mean that eigenvalues of the modified Dirac
operator would be of form 1/2 + i

∑
k nkyk and the number theoretical cutoff

regularizing the Dirac determinant would emerge naturally. The important im-
plication would be that not only qiyk but also yk must be algebraic numbers.
Note that the zeros of Riemann zeta at this line correspond to quantum critical-
ity against phase transitions changing Planck constant meaning geometrically a
leakage between different sectors of the imbedding space.

3.6 Number theoretic braids and global view about anti-
commutations of induced spinor fields

The anti-commutations of induced spinor fields are reasonably well understood
locally. The basic objects are 3-dimensional light-like 3-surfaces. These surfaces
can be however seen as random light-like orbits of partonic 2-surfaces taking
which would thus seem to take the role of fundamental dynamical objects. Con-
formal invariance in turn seems to make the 2-D partons 1-D objects and number
theoretical braids in turn discretizes strings. And it also seems that the strands
of number theoretic braid can in turn be discretized by considering the minima
of Higgs potential in 3-D sense.

Somehow these apparently contradictory views should be unifiable in a more
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global view about the situation allowing to understand the reduction of effective
dimension of the system as one goes to short scales. The notions of measurement
resolution and number theoretic braid indeed provide the needed insights in this
respect.

3.6.1 Anti-commutations of the induced spinor fields and number
theoretical braids

The understanding of the number theoretic braids in terms of Higgs minima and
maxima allows to gain a global view about anti-commutations. The coordinate
patches inside which Higgs modulus is monotonically increasing function define
a division of partonic 2-surfaces X2

t = X3
l ∩ δM4

±,t to 2-D patches as a function
of time coordinate of X3

l as light-cone boundary is shifted in preferred time
direction defined by the quantum critical sub-manifold M2×CP2. This induces
similar division of the light-like 3-surfaces X3

l to 3-D patches and there is a close
analogy with the dynamics of ordinary 2-D landscape.

In both 2-D and 3-D case one can ask what happens at the common bound-
aries of the patches. Do the induced spinor fields associated with different
patches anti-commute so that they would represent independent dynamical de-
grees of freedom? This seems to be a natural assumption both in 2-D and 3-D
case and correspond to the idea that the basic objects are 2- resp. 3-dimensional
in the resolution considered but this in a discretized sense due to finite measure-
ment resolution, which is coded by the patch structure of X3

l . A dimensional
hierarchy results with the effective dimension of the basic objects increasing as
the resolution scale increases when one proceeds from braids to the level of X3

l .
If the induced spinor fields associated with different patches anti-commute,

patches indeed define independent fermionic degrees of freedom at braid points
and one has effective 2-dimensionality in discrete sense. In this picture the fun-
damental stringy curves for X2

t correspond to the boundaries of 2-D patches
and anti-commutation relations for the induced spinor fields can be formulated
at these curves. Formally the conformal time evolution scaled down the bound-
aries of these patches. If anti-commutativity holds true at the boundaries of
patches for spinor fields of neighboring patches, the patches would indeed rep-
resent independent degrees of freedom at stringy level.

The cutoff in transversal degrees of freedom for the induced spinor fields
means cutoff n ≤ nmax for the conformal weight assignable to the holomorphic
dependence of the induced spinor field on the complex coordinate. The dropping
of higher conformal weights should imply the loss of the anti-commutativity of
the induced spinor fields and its conjugate except at the points of the number
theoretical braid. Thus the number theoretic braid should code for the value
of nmax: the naive expectation is that for a given stringy curve the number of
braid points equals to nmax.
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3.6.2 The decomposition into 3-D patches and QFT description of
particle reactions at the level of number theoretic braids

What is the physical meaning of the decomposition of 3-D light-like surface to
patches? It would be very desirable to keep the picture in which number theo-
retic braid connects the incoming positive/negative energy state to the partonic
2-surfaces defining reaction vertices. This is not obvious if X3

l decomposes into
causally independent patches. One can however argue that although each patch
can define its own fermion state it has a vanishing net quantum numbers in zero
energy ontology, and can be interpreted as an intermediate virtual state for the
evolution of incoming/outgoing partonic state.

Another problem - actually only apparent problem - has been whether it is
possible to have a generalization of the braid dynamics able to describe particle
reactions in terms of the fusion and decay of braid strands. For some strange
reason I had not realized that number theoretic braids naturally allow fusion
and decay. Indeed, cusp catastrophe is a canonical representation for the fusion
process: cusp region contains two minima (plus maximum between them) and
the complement of cusp region single minimum. The crucial control parameter
of cusp catastrophe corresponds to the time parameter of X3

l . More concretely,
two valleys with a mountain between them fuse to form a single valley as the two
real roots of a polynomial become complex conjugate roots. The continuation
of light-like surface to slicing of X4 to light-like 3-surfaces would give the full
cusp catastrophe.

In the catastrophe theoretic setting the time parameter of X3
l appears as a

control variable on which the roots of the polynomial equation defining minimum
of Higgs depend: the dependence would be given by a rational function with
rational coefficients.

This picture means that particle reactions occur at several levels which brings
in mind a kind of universal mimicry inspired by Universe as a Universal Com-
puter hypothesis. Particle reactions in QFT sense correspond to the reactions for
the number theoretic braids inside partons. This level seems to be the simplest
one to describe mathematically. At parton level particle reactions correspond
to generalized Feynman diagrams obtained by gluing partonic 3-surfaces along
their ends at vertices. Particle reactions are realized also at the level of 4-D
space-time surfaces. One might hope that this multiple realization could code
the dynamics already at the simple level of single partonic 3-surface.

3.6.3 About 3-D minima of Higgs potential

The dominating contribution to the modulus of the Higgs field comes from δM4
±

distance to the axis R+ defining quantization axis. Hence in scales much larger
than CP2 size the geometric picture is quite simple. The orbit for the 2-D
minimum of Higgs corresponds to a particle moving in the vicinity of R+ and
minimal distances from R+ would certainly give a contribution to the Dirac
determinant. Of course also the motion in CP2 degrees of freedom can generate
local minima and if this motion is very complex, one expects large number of
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minima with almost same modulus of eigenvalues coding a lot of information
about X3

l .
It would seem that only the most essential information about surface is

coded: the knowledge of minima and maxima of height function indeed provides
the most important general coordinate invariant information about landscape.
In the rational category where X3

l can be characterized by a finite set of rational
numbers, this might be enough to deduce the representation of the surface.

What if the situation is stationary in the sense that the minimum value of
Higgs remains constant for some time interval? Formally the Dirac determi-
nant would become a continuous product having an infinite value. This can
be avoided by assuming that the contribution of a continuous range with fixed
value of Higgs minimum is given by the contribution of its initial point: this is
natural if one thinks the situation information theoretically. Physical intuition
suggests that the minima remain constant for the maxima of Kähler function
so that the initial partonic 2-surface would determine the entire contribution to
the Dirac determinant.

3.6.4 How generalized braid diagrams relate to the perturbation
theory?

The association of generalized braid diagrams to incoming and outgoing partonic
legs and possibly also vertices of the generalized Feynman diagrams forces to
ask whether the generalized braid diagrams could give rise to a counterpart of
perturbation theoretical formalism via the functional integral over configuration
space degrees of freedom.

The question is how the functional integral over configuration space degrees
of freedom relates to the generalized braid diagrams. The basic conjecture
motivated also number theoretically is that radiative corrections in this sense
sum up to zero for critical values of Kähler coupling strength and Kähler function
codes radiative corrections to classical physics via the dependence of the scale
of M4 metric on Planck constant. Cancellation occurs only for critical values
of Kähler coupling strength αK : for general values of αK cancellation would
require separate vanishing of each term in the sum and does not occur.

This would mean following.

1. One would not have perturbation theory around a given maximum of
Kähler function but as a sum over increasingly complex maxima of Kähler
function. Radiative corrections in the sense of perturbative functional
integral around a given maximum would vanish (so that the expansion
in terms of braid topologies would not make sense around single maxi-
mum). Radiative corrections would not vanish in the sense of a sum over
3-topologies obtained by adding radiative corrections as zero energy states
in shorter time scale.

2. Connes tensor product with a given measurement resolution would cor-
respond to a restriction on the number of maxima of Kähler function
labelled by the braid diagrams. For zero energy states in a given time
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scale the maxima of Kähler function could be assigned to braids of min-
imal complexity with braid vertices interpreted in terms of an addition
of radiative corrections. Hence a connection with QFT type Feyman dia-
gram expansion would be obtained and the Connes tensor product would
have a practical computational realization.

3. The cutoff in the number of topologies (maxima of Kähler function con-
tributing in a given resolution defining Connes tensor product) would be
always finite in accordance with the algebraic universality.

4. The time scale resolution defined by the temporal distance between the
tips of the causal diamond defined by the future and past light-cones
applies to the addition of zero energy sub-states and one obtains a direct
connection with p-adic length scale evolution of coupling constants since
the time scales in question naturally come as negative powers of two.
More precisely, p-adic primes near power of two are very natural since the
coupling constant evolution comes in powers of two of fundamental 2-adic
length scale.

There are still some questions. Radiative corrections around given 3-topology
vanish. Could radiative corrections sum up to zero in an ideal measurement
resolution also in 2-D sense so that the initial and final partonic 2-surfaces as-
sociated with a partonic 3-surface of minimal complexity would determine the
outcome completely? Could the 3-surface of minimal complexity correspond to
a trivial diagram so that free theory would result in accordance with asymptotic
freedom as measurement resolution becomes ideal?

The answer to these questions seems to be ’No’. In the p-adic sense the
ideal limit would correspond to the limit p→ 0 and since only p→ 2 is possible
in the discrete length scale evolution defined by primes, the limit is not a free
theory. This conforms with the view that CP2 length scale defines the ultimate
UV cutoff.

3.6.5 How p-adic coupling constant evolution and p-adic length scale
hypothesis emerge?

One can wonder how this picture relates to the earlier hypothesis that p-adic
length coupling constant evolution is coded to the hypothesized log(p) normal-
ization of the eigenvalues of the modified Dirac operator D. There are objections
against this normalization. log(p) factors are not number theoretically favored
and one could consider also other dependencies on p. Since the eigenvalue spec-
trum of D corresponds to the values of Higgs expectation at points of partonic
2-surface defining number theoretic braids, Higgs expectation would have log(p)
multiplicative dependence on p-adic length scale, which does not look attractive.

Is there really any need to assume this kind of normalization? Could the
coupling constant evolution in powers of 2 implying time scale hierarchy Tn =
2nT0 induce p-adic coupling constant evolution and explain why p-adic length
scales correspond to Lp ∝

√
pR, p ' 2k, R CP2 length scale? This looks
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attractive but there is a problem. p-Adic length scales come as powers of
√

2
rather than 2 and the strongly favored values of k are primes and thus odd so
that n = k/2 would be half odd integer. This problem can be solved.

1. The observation that the distance traveled by a Brownian particle dur-
ing time t satisfies r2 = Dt suggests a solution to the problem. p-Adic
thermodynamics applies because the partonic 3-surfaces X2 are as 2-D dy-
namical systems random apart from light-likeness of their orbit. For CP2

type vacuum extremals the situation reduces to that for a one-dimensional
random light-like curve in M4. The orbits of Brownian particle would
now correspond to light-like geodesics γ3 at X3. The projection of γ3

to a time=constant section X2 ⊂ X3 would define the 2-D path γ2 of
the Brownian particle. The M4 distance r between the end points of γ2

would be given r2 = Dt. The favored values of t would correspond to
Tn = 2nT0 (the full light-like geodesic). p-Adic length scales would result
as L2(k) = DT (k) = D2kT0 for D = R2/T0. Since only CP2 scale is
available as a fundamental scale, one would have T0 = R and D = R and
L2(k) = T (k)R.

2. p-Adic primes near powers of 2 would be in preferred position. p-Adic
time scale would not relate to the p-adic length scale via Tp = Lp/c as
assumed implicitly earlier but via Tp = L2

p/R0 =
√
pLp, which corresponds

to secondary p-adic length scale. For instance, in the case of electron with
p = M127 one would have T127 = .1 second which defines a fundamental
biological rhythm. Neutrinos with mass around .1 eV would correspond
to L(169) ' 5 µm (size of a small cell) and T (169) ' 1. × 104 years. A
deep connection between elementary particle physics and biology becomes
highly suggestive.

3. In the proposed picture the p-adic prime p ' 2k would characterize the
thermodynamics of the random motion of light-like geodesics of X3 so
that p-adic prime p would indeed be an inherent property of X3.

3.6.6 How quantum classical correspondence is realized at parton
level?

Quantum classical correspondence must assign to a given quantum state the
most probable space-time sheet depending on its quantum numbers. The space-
time sheet X4(X3) defined by the Kähler function depends however only on the
partonic 3-surface X3, and one must be able to assign to a given quantum state
the most probable X3 - call it X3

max - depending on its quantum numbers.
X4(X3

max) should carry the gauge fields created by classical gauge charges
associated with the Cartan algebra of the gauge group (color isospin and hy-
percharge and electromagnetic and Z0 charge) as well as classical gravitational
fields created by the partons. This picture is very similar to that of quantum
field theories relying on path integral except that the path integral is restricted
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to 3-surfaces X3 with exponent of Kähler function bringing in genuine conver-
gence and that 4-D dynamics is deterministic apart from the delicacies due to
the 4-D spin glass type vacuum degeneracy of Kähler action.

Stationary phase approximation selects X3
max if the quantum state contains

a phase factor depending not only on X3 but also on the quantum numbers of
the state. A good guess is that the needed phase factor corresponds to either
Chern-Simons type action or a boundary term of YM action associated with
a particle carrying gauge charges of the quantum state. This action would be
defined for the induced gauge fields. YM action seems to be excluded since it is
singular for light-like 3-surfaces associated with the light-like wormhole throats
(not only

√
det(g3) but also

√
det(g4) vanishes).

The challenge is to show that this is enough to guarantee that X4(X3
max)

carries correct gauge charges. Kind of electric-magnetic duality should relate
the normal components Fni of the gauge fields in X4(X3

max) to the gauge fields
Fij induced at X3. An alternative interpretation is in terms of quantum gravita-
tional holography. The difference between Chern-Simons action characterizing
quantum state and the fundamental Chern-Simons type factor associated with
the Kähler form would be that the latter emerges as the phase of the Dirac
determinant.

One is forced to introduce gauge couplings and also electro-weak symmetry
breaking via the phase factor. This is in apparent conflict with the idea that
all couplings are predictable. The essential uniqueness of M-matrix in the case
of HFFs of type II1 (at least) however means that their values as a function
of measurement resolution time scale are fixed by internal consistency. Also
quantum criticality leads to the same conclusion. Obviously a kind of bootstrap
approach suggests itself.

4 Super-symmetries at space-time and configu-
ration space level

The first difference between TGD and standard conformal field theories and
string models is that super-symmetry generators acting as configuration space
gamma matrices acting as super generators carry either lepton or quark num-
ber. Only the anti-commutators of quark like generators expressible in terms
of Hamiltonians HA of X3

l × CP2 can contribute to the super-symmetrization
of the Poisson algebra and thus to CH metric via Poisson central extension,
whereas leptonic generators, which are proportional to jAkΓk can contribute to
the super-symmetrization of the function algebra of CH. Quarks correspond to
N-S type representations and kappa symmetry of string models whereas leptons
correspond to Ramond type representations and ordinary super-symmetry.

Also Super Kac-Moody invariance allows lepton-quark dichotomy. What
forces to assign leptons with Ramond representation is that covariantly constant
neutrino must correspond to one conformal mode (zn, n = 0). The p-adic mass
calculations [6] carried for more than decade ago led to the same assignment
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on physical grounds: p-adic mass calculations also forced to include SO(3, 1)
besides M4 a tensor factor to super-conformal representations, which in recent
context suggests that causal determinants X3

l × CP2, X3
l ⊂ M4 an arbitrary

light like 3-surface rather than just a translate of δM4
+, must be allowed. Also

now the lepton-quark, Ramond-NS and SUSY-kappa dichotomies correspond to
one and same dichotomy so that the general structure looks quite satisfactory
although it must be admitted that it is based on heuristic guess work.

Second deep difference is the appearance of the zeros of Riemann Zeta as
conformal weights of the generating elements of the super-canonical algebra and
the expected action of conformal algebra associated with 3-D CDS as a spectral
flow in the space of super-canonical conformal weights inducing a mere gauge
transformation infinitesimally and a braiding action in topological degrees of
freedom.

In this section the relationship of Super Kac-Moody invariance to ordinary
super-conformal symmetry and the interaction between Super-Kac Moody and
super-canonical symmetries are discussed. For years the role of quaternions
and octonions in TGD has been under an active speculation. These aspects
are considered in [E2], where the number theoretic equivalent of spontaneous
compactification is proposed. The conjecture states that space-time surfaces
can be regarded either as 4-surfaces in M4 × CP2 or as hyper-quaternionic
4-surfaces in the space HO = M8 possessing hyper-octonionic structure (the
attribute ’hyper’ means that imaginary units are multiplied by

√
−1 in order to

achieve number theoretic norm with Minkowskian signature).

4.1 Super-canonical and Super Kac-Moody symmetries

The proper understanding of super symmetries has turned out to be crucial
for the understanding of quantum TGD and it seems that the mis-interpreted
super-symmetries are one of the basic reasons for the difficulties of super string
models too. At this moment one can fairly say that the construction of the con-
figuration space spinor structure reduces to a purely group theoretical problem
of constructing representations for the super generators of the super-canonical
algebra of CP2 localized with respect to δM4

± in terms of second quantized
induced spinor fields.

4.1.1 Super canonical symmetries

One can imagine two kinds of causal determinants besides δM4
+ × CP2. In

principle all surfaces X3
l ×CP2, where X3

l is a light like 3-surface of M4, could
act as effective causal determinants: the reason is that the creation of pairs
of positive and negative energy space-time sheets is possible at these surfaces.
There are good hopes that the super-canonical and super-conformal symmetries
associated with δX3

l allow to generalize the construction of the configuration
space geometry performed at δM4

+ ×CP2. If X3
l can be restricted to be unions

of future and past light cone boundaries, the generalization is more or less
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trivial: one just forms a union of configuration spaces associated with unions of
translates of δM4

+ and δM4
−.

As explained in the previous chapter, one can understand how the causal de-
terminants X3

l ×CP2 emerge from the facts that space-time sheets with negative
time orientation carry negative energy and that the most elegant theory results
when the net quantum numbers and conserved classical quantities vanish for the
entire Universe. Crossing symmetry allows consistency with elementary particle
physics and the identification of gravitational 4-momentum as difference of con-
served inertial (Poincare) 4-momenta for positive and negative energy matter
provides consistency with macroscopic physics.

The emergence of these additional causal determinants means that super-
canonical symmetries become microscopic, rather than only cosmological, sym-
metries commuting with Poincare transformations exactly for M4 × CP2 and
apart from small quantum gravitational effects for M4

+ ×CP2. Super-canonical
symmetry differs in many respects from Kac-Moody symmetries of particle
physics, which in fact correspond to the conformal invariance associated with the
modified Dirac action and correspond to the product of Poincare, electro-weak
and color groups. It seems that these symmetries are dually related.

4.1.2 Super Kac-Moody symmetries associated with the light like
causal determinants

Also the light like 3-surfaces X3
l of H defining elementary particle horizons at

which Minkowskian signature of the metric is changed to Euclidian and bound-
aries of space-time sheets can act as causal determinants, and thus contribute
to the configuration space metric. In this case the symmetries correspond to
the isometries of the imbedding space localized with respect to the complex
coordinate of the 2-surface X2 determining the light like 3-surface X3

l so that
Kac-Moody type symmetry results. Also the condition

√
(g3) = 0 for the deter-

minant of the induced metric seems to define a conformal symmetry associated
with the light like direction. This conforms with duality since also the 7-D causal
determinants X3

l ×CP2 allow both radial and transversal conformal symmetry.
Good candidate for the counterpart of this symmetry in the interior of space-

time surface is hyper-quaternion conformal invariance [E2]. All that is needed
for these symmetries to be equivalent that the spaces of super-gauge degrees of
freedom defined by them are equivalent. Kac Moody generators and their super
counterparts can be associated with the 3-D light like CDs.

If is enough to localize only the H-isometries with respect to X3
l , the purely

bosonic part of the Kac-Moody algebra corresponds to the isometry group
M4 × SO(3, 1) × SU(3). The physical interpretation of these symmetries is
not so obvious as one might think. The point is that one can generalize the
formulas characterizing the action of infinitesimal isometries on spinor fields of
finite-dimensional Kähler manifold to the level of the configuration space. This
gives rise to bosonic generators containing also a sigma-matrix term bilinear in
fermionic oscillator operators. This representation is not equivalent with the
purely fermionic representations provided by induced Dirac action. Thus one
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has two groups of local color charges and the challenge is to find a physical
interpretation for them. The following arguments fix the identification.

1. The hint comes from the fact that U(2) in the decomposition CP2 =
SU(3)/U(2) corresponds in a well-defined sense electro-weak algebra iden-
tified as a holonomy algebra of the spinor connection. Hence one could ar-
gue that the U(2) generators of either SU(3) algebra might be identifiable
as generators of local U(2)ew gauge transformations whereas non-diagonal
generators would correspond to Higgs field. This interpretation would
conform with the idea that Higgs field is a genuine scalar field rather than
a composite of fermions.

2. Since X3
l -local SU(3) transformations represented by fermionic currents

are characterized by central extension they would naturally correspond to
the electro-weak gauge algebra and Higgs bosons. This is also consistent
with the fact that both leptons and quarks define fermionic Kac Moody
currents.

3. The fact that only quarks appear in the gamma matrices of the configu-
ration space supports the view that action of the generators of X3

l -local
color transformations on configuration space spinor fields represents local
color transformations. If the action of X3

l -local SU(3) transformations
on configuration space spinor fields has trivial central extension term the
identification as a representation of local color symmetries is possible.

The topological explanation of the family replication phenomenon is based
on an assignment of 2-dimensional boundary to a 3-surface characterizing the
elementary particle. The precise identification of this surface has remained open
and one possibility is that the 2-surface X2 defining the light light-like surface
associated with an elementary particle horizon is in question. This assumption
would conform with the notion of elementary particle vacuum functionals de-
fined in the zero modes characterizing different conformal equivalences classes
for X2.

4.1.3 The relationship of the Super-Kac Moody symmetry to the
standard super-conformal invariance

Super-Kac Moody symmetry can be regarded asN = 4 complex super-symmetry
with complex H-spinor modes of H representing the 4 physical helicities of
8-component leptonic and quark like spinors acting as generators of complex
dynamical super-symmetries. The super-symmetries generated by the covari-
antly constant right handed neutrino appear with both M4 helicities: it however
seems that covariantly constant neutrino does not generate any global super-
symmetry in the sense of particle-sparticle mass degeneracy. Only righthanded
neutrino spinor modes (apart from covariantly constant mode) appear in the
expressions of configuration space gamma matrices forming a subalgebra of the
full super-algebra.
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N = 2 real super-conformal algebra is generated by the energy momen-
tum tensor T (z), U(1) current J(z), and super generators G±(z) carrying U(1)
charge. Now U(1) current would correspond to right-handed neutrino number
and super generators would involve contraction of covariantly constant neu-
trino spinor with second quantized induced spinor field. The further facts that
N = 2 algebra is associated naturally with Kähler geometry, that the partition
functions associated with N = 2 super-conformal representations are modular
invariant, and that N = 2 algebra defines so called chiral ring defining a topolog-
ical quantum field theory [24], lend a further support for the belief that N = 2
super-conformal algebra acts in super-canonical degrees of freedom.

The values of c and conformal weights for N = 2 super-conformal field
theories are given by

c =
3k
k + 2

,

∆l,m(NS) =
l(l + 2)−m2

4(k + 2)
, l = 0, 1, ..., k ,

qm =
m

k + 2
, m = −l,−l + 2, ...., l − 2, l . (51)

qm is the fractional value of the U(1) charge, which would now correspond to a
fractional fermion number. For k = 1 one would have q = 0, 1/3,−1/3, which
brings in mind anyons. ∆l=0,m=0 = 0 state would correspond to a massless state
with a vanishing fermion number. Note that SU(2)k Wess-Zumino model has
the same value of c but different conformal weights. More information about
conformal algebras can be found from the appendix of [24].

For Ramond representation L0 − c/24 or equivalently G0 must annihilate
the massless states. This occurs for ∆ = c/24 giving the condition k =
2
[
l(l + 2)−m2

]
(note that k must be even and that (k, l,m) = (4, 1, 1) is the

simplest non-trivial solution to the condition). Note the appearance of a frac-
tional vacuum fermion number qvac = ±c/12 = ±k/4(k + 2). I have proposed
that NS and Ramond algebras could combine to a larger algebra containing also
lepto-quark type generators but this not necessary.

The conformal algebra defined as a direct sum of Ramond and NS N = 4
complex sub-algebras associated with quarks and leptons might further extend
to a larger algebra if lepto-quark generators acting effectively as half odd-
integer Virasoro generators can be allowed. The algebra would contain spin and
electro-weak spin as fermionic indices. Poincare and color Kac-Moody genera-
tors would act as symplectically extended isometry generators on configuration
space Hamiltonians expressible in terms of Hamiltonians of X3

l ×CP2. Electro-
weak and color Kac-Moody currents have conformal weight h = 1 whereas T
and G have conformal weights h = 2 and h = 3/2.

The experience with N = 4 complex super-conformal invariance suggests
that the extended algebra requires the inclusion of also second quantized induced
spinor fields with h = 1/2 and their super-partners with h = 0 and realized
as fermion-antifermion bilinears. Since G and Ψ are labelled by 2 × 4 spinor
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indices, super-partners would correspond to 2×(3+1) = 8 massless electro-weak
gauge boson states with polarization included. Their inclusion would make the
theory highly predictive since induced spinor and electro-weak fields are the
fundamental fields in TGD.

4.1.4 How could conformal symmetries of light like 3-D CDs act on
super-canonical degrees of freedom?

An important challenge is to understand the action of super-conformal sym-
metries associated with the light like 3-D CDs on super-canonical degrees of
freedom. The breakthrough in this respect via the algebraic formulation for the
vision about vanishing loop corrections of ordinary Feynman diagrams in terms
of equivalence of generalized Feynman diagrams with loops with tree diagrams
[C7]. The formulation involves Yang-Baxter equations, braid groups, Hopf al-
gebras, and so called ribbon categories and led to the following vision. The
original formulation to be discussed in this sub-subsection is very heuristic and
a more quantitative formulation follows in the next subsection.

1. Quantum classical correspondence suggests that the complex conformal
weights of super-canonical algebra generators have space-time counter-
parts. The proposal is that the weights are mapped to the points of the
homologically non-trivial geodesic sphere S2 of CP2 corresponds to the
super-canonical conformal weights, and corresponds to a discrete set of
points at the space-time surface. These points would also label mutually
commutating R-matrices. The map is completely analogous to the map
of momenta of quantum particles to the points of celestial sphere. These
points would belong to a ”time=constant” section of 2-dimensional ”space-
time”, presumably circle, defining physical states of a two-dimensional
conformal field theory for which the scaling operator L0 takes the role of
Hamiltonian.

2. One could thus regard super-generators as conformal fields in space-time
or complex plane having super-canonical conformal weights as punctures.
The action of super-conformal algebra and braid group on these points
realizing monodromies of conformal field theories [24] would induce by a
pull-back a braid group action on the super-canonical conformal weights of
configuration space gamma matrices (super generators) and corresponding
isometry generators.

At the first sight the explicit realization of super-canonical and Kac Moody
generators seems however to be in conflict with this vision. The interaction of
the conformal algebra of X3

l on super-canonical algebra is a pure gauge inter-
action since the definition of super canonical generators is not changed by the
action of conformal transformations of X3

l . This is however consistent with the
assumption that the action defined by the quantum-classical correspondence is
also a pure gauge interaction locally. The braiding action would be analogous
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to the holonomies encountered in the case of non-Abelian gauge fields with a
vanishing curvature in spaces possessing non-trivial first homotopy group.

Quantum classical correspondence would allow to map abstract configuration
space level to space-time level.

1. The complex argument z of Kac Moody and Virasoro algebra generators
T (z) =

∑
Tnz

n would be discretized so that it would have values on the
set of supercanonical conformal weights corresponding to the space t in the
Cartan decomposition g = t+ h of the tangent space of the configuration
space. These points could be interpreted as punctures of the complex
plane restricted to the lines Re(z) = ±1/2 and positive real axis if zeros
of Riemann zeta define the conformal weights.

2. The vacuum expectation values of the enveloping algebra of the super-
canonical algebra would reduce to n-point functions of a super-conformal
quantum field theory in the complex plane containing infinite number of
punctures defined by the super-canonical conformal weights, for which pri-
mary fields correspond to the representations of SO(3)×SU(3). These rep-
resentations would combine to form infinite-dimensional representations
of super-canonical algebra. The presence of the gigantic super-canonical
symmetries raises the hope that quantum TGD could be solvable to a very
high degree.

3. The Super Virasoro algebra and Super Kac Moody algebra associated
with 3-D light like CDs would act as symmetries of this theory and the S-
matrix of TGD would involve the n-point functions of this field theory. By
7–3 duality this indeed makes sense. The situation would reduce to that
encountered in WZW theory in the sense that one would have space-like
3-surfaces X3 containing two-dimensional closed surfaces carrying repre-
sentations of Super Kac-Moody algebra.

This picture also justifies the earlier proposal that configuration space Clif-
ford algebra defined by the gamma matrices acting as super generators defines
an infinite-dimensional von Neumann algebra possessing hierarchies of type II1

factors [25] having a close connection with the non-trivial representations of
braid group and quantum groups. The sequence of non-trivial zeros of Riemann
Zeta along the line Re(s) = 1/2 in the plane of conformal weights could be
regarded an an infinite braid behind the von Neumann algebra [25]. Contrary
to the expectations, also trivial zeros seem to be important. The finite braids
defined by subsets of zeros, and also superpositions of non-trivial zeros of form
1/2+

∑
i yi, could be seen as a hierarchy of completely integrable 1-dimensional

spin chains leading to quantum groups and braid groups [23, 24] naturally.
It seems that not only Riemann’s zeta but also polyzetas [26, 27, 28, 29]

could play a fundamental role in TGD Universe. The super-canonical con-
formal weights of interacting particles, in particular of those forming bound
states, are expected to have ”off mass shell” values. An attractive hypothesis is
that they correspond to zeros of Riemann’s polyzetas. Interaction would allow
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quite concretely the realization of braiding operations dynamically. The physi-
cal justification for the hypothesis would be quantum criticality. Indeed, it has
been found that the loop corrections of quantum field theory are expressible
in terms of polyzetas [30]. If the arguments of polyzetas correspond to confor-
mal weights of particles of many-particle bound state, loop corrections vanish
when the super-canonical conformal weights correspond to the zeros of polyzetas
including zeta.

4.2 The relationship between super-canonical and Super
Kac-Moody algebras, Equivalence Principle, and jus-
tification of p-adic thermodynamics

The relationship between super-canonical algebra (SC) acting at light-cone
boundary and Super Kac-Moody algebra (SKM) acting on light-like 3-surfaces
has remained somewhat enigmatic due to the lack of physical insights. This
is not the only problem. The question to precisely what extent Equivalence
Principle (EP) remains true in TGD framework and what might be the precise
mathematical realization of EP is waiting for an answer. Also the justification
of p-adic thermodynamics for the scaling generator L0 of Virasoro algebra -in
obvious conflict with the basic wisdom that this generator should annihilate
physical states- is lacking. It seems that these three problems could have a
common solution.

Before going to describe the proposed solution, some background is neces-
sary. The latest proposal for SC − SKM relationship relies on non-standard
and therefore somewhat questionable assumptions.

1. SKM Virasoro algebra (SKMV) and SC Virasoro algebra (SCV) (anti)commute
for physical states.

2. SC algebra generates states of negative conformal weight annihilated by
SCV generators Ln, n < 0, and serving as ground states from which
SKM generators create states with non-negative conformal weight.

This picture could make sense for elementary particles. On other hand, the
recent model for hadrons [F4] assumes that SC degrees of freedom contribute
about 70 per cent to the mass of hadron but at space-time sheet different from
those assignable to quarks. The contribution of SC degrees of freedom to the
thermal average of the conformal weight would be positive. A contradiction
results unless one assumes that there exists also SCV ground states with positive
conformal weight annihilated by SCV elements Ln, n < 0, but also this seems
implausible.

4.2.1 New vision about the relationship between SCV and SKMV

Consider now the new vision about the relationship between SCV and SKMV .
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1. The isometries of H assignable with SKM are also symplectic transfor-
mations [B3] (note that I have used the term canonical instead of sym-
plectic previously). Hence might consider the possibility that SKM could
be identified as a subalgebra of SC. If this makes sense, a generaliza-
tion of the coset construction obtained by replacing finite-dimensional Lie
group with infinite-dimensional symplectic group suggests itself. The dif-
ferences of SCV and SKMV elements would annihilate physical states
and (anti)commute with SKMV . Also the generators On, n > 0, for both
algebras would annihilate the physical states so that the differences of the
elements would annihilate automatically physical states for n > 0.

2. The super-generator G0 contains the Dirac operator D of H. If the ac-
tion of SCV and SKMV Dirac operators on physical states are identical
then cm of degrees of freedom disappear from the differences G0(SCV )−
G0(SKMV ) and L0(SCV )−L0(SKMV ). One could interpret the identi-
cal action of the Dirac operators as the long sought-for precise realization
of Equivalence Principle (EP) in TGD framework. EP would state that the
total inertial four-momentum and color quantum numbers assignable to
SC (imbedding space level) are equal to the gravitational four-momentum
and color quantum numbers assignable to SKM (space-time level). Note
that since super-canonical transformations correspond to the isometries of
the ”world of classical worlds” the assignment of the attribute ”inertial”
to them is natural.

3. The analog of coset construction applies also to SKM and SC algebras
which means that physical states can be thought of as being created by
an operator of SKM carrying the conformal weight and by a genuine SC
operator with vanishing conformal weight. Therefpre the situation does
not reduce to that encountered in super-string models

4. The reader can recognize SC − SKM as a precise formulation for 7 − 3
duality discussed in the section About dualities and conformal symmetries
in TGD framework stating that 3-D light-like causal determinants and
7-D causal determinants δM4

± × CP2 are equivalent.

4.2.2 Consistency with p-adic thermodynamics

The consistency with p-adic thermodynamics provides a strong reality test and
has been already used as a constraint in attempts to understand the super-
conformal symmetries in partonic level.

1. In physical states the p-adic thermal expectation value of the SKM and
SC conformal weights would be non-vanishing and identical and mass
squared could be identified to the expectation value of SKM scaling gen-
erator L0. There would be no need to give up Super Virasoro conditions
for SCV − SKMV .
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2. There is consistency with p-adic mass calculations for hadrons [F4] since
the non-perturbative SC contributions and perturbative SKM contribu-
tions to the mass correspond to space-time sheets labeled by different
p-adic primes. The earlier statement that SC is responsible for the dom-
inating non-perturbative contributions to the hadron mass transforms to
a statement reflecting SC − SKM duality. The perturbative quark con-
tributions to hadron masses can be calculated most conveniently by using
p-adic thermodynamics for SKM whereas non-perturbative contributions
to hadron masses can be calculated most conveniently by using p-adic ther-
modynamics for SC. Also the proposal that the exotic analogs of baryons
resulting when baryon looses its valence quarks [F5] remains intact in this
framework.

3. The results of p-adic mass calculations depend crucially on the number N
of tensor factors contributing to the Super-Virasoro algebra. The required
number is N = 5 and during years I have proposed several explanations for
this number. It seems that holonomic contributions that is electro-weak
and spin contributions must be regarded as contributions separate from
those coming from isometries. SKM algebras in electro-weak degrees and
spin degrees of of freedom, would give 2+1=3 tensor factors corresponding
to U(2)ew × SU(2). SU(3) and SO(3) (or SO(2) ⊂ SO(3) leaving the
intersection of light-like ray with S2 invariant) would give 2 additional
tensor factors. Altogether one would indeed have 5 tensor factors.

There are some further questions which pop up in mind immediately.

1. Why mass squared corresponds to the thermal expectation value of the net
conformal weight? This option is forced among other things by Lorentz
invariance but it is not possible to provide a really satisfactory answer to
this question yet. In the coset construction there is no reason to require
that the mass squared equals to the integer value conformal weight for
SKM algebra. This allows the possibility that mass squared has same
value for states with different values of SKM conformal weights appearing
in the thermal state and equals to the average of the conformal weight.

The coefficient of proportionality can be however deduced from the obser-
vation that the mass squared values for CP2 Dirac operator correspond
to definite values of conformal weight in p-adic mass calculations. It is
indeed possible to assign to partonic 2-surface X2 CP2 partial waves corre-
lating strongly with the net electro-weak quantum numbers of the parton
so that the assignment of ground state conformal weight to CP2 partial
waves makes sense. In the case of M4 degrees of freedom it is not possible
to talk about momentum eigen states since translations take parton out
of δH+ so that momentum must be assigned with the tip of the light-cone
containing the particle.

2. The additivity of conformal weight means additivity of mass squared at
parton level and this has been indeed used in p-adic mass calculations.
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This implies the conditions

(
∑
i

pi)2 =
∑
i

m2
i (52)

The assumption p2
i = m2

i makes sense only for massless partons mov-
ing collinearly. In the QCD based model of hadrons only longitudinal
momenta and transverse momentum squared are used as labels of par-
ton states, which together with the presence of preferred plane M2 would
suggest that one has

p2
i,|| = m2

i ,

−
∑
i

p2
i,⊥ + 2

∑
i,j

pi · pj = 0 . (53)

The masses would be reduced in bound states: m2
i → m2

i − (p2
T )i. This

could explain why massive quarks can behave as nearly massless quarks
inside hadrons.

3. Single particle super-canonical conformal weights can have also imaginary
part, call it y. The question is what complex mass squared means phys-
ically. Complex conformal weights have been assigned with an inherent
time orientation distinguishing positive energy particle from negative en-
ergy antiparticle (in particular, phase conjugate photons from ordinary
photons). This suggests an interpretation of y in terms of a decay width.
p-Adic thermodynamics suggest that y vanishes for states with vanishing
conformal weight (mass squared) and that the measured value of y is a
p-adic thermal average with non-vanishing contributions from states with
mass of order CP2 mass. This makes sense if yk are algebraic or perhaps
even rational numbers.

For instance, if a massless state characterized by p-adic prime p has p-adic
thermal average y = psyk, where s is the denominator of rational valued
yk = r/s, the lowest order contribution to the decay width is proportional
to 1/p by the basic rules of p-adic mass calculations and the decay rate is
of same order of magnitude as mass. If the p-adic thermal average of y is of
form pnyk for massless state then a decay width of order Γ ∼ p−(n−1)/2m
results. For electron n should be rather large. This argument generalizes
trivially to the case in which massless state has vanishing value of y.

4.2.3 Can SKM be lifted to a sub-algebra of SC?

A picture introducing only a generalization of coset construction as a new el-
ement, realizing mathematically Equivalence Principle, and justifying p-adic
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thermodynamics is highly attractive but there is a problem. SKM is defined
at light-like 3-surfaces X3 whereas SC acts at light-cone boundary δH± =
δM4
± × CP2. One should be able to lift SKM to imbedding space level some-

how. Also SC should be lifted to entire H. This problem was the reason why I
gave up the idea about coset construction and SC−SKM duality as it appeared
for the first time.

A possible solution of the lifting problem comes from the observation making
possible a more rigorous formulation of HO − H duality stating that one can
regard space-time surfaces either as surfaces in hyper-octonionic space HO =
M8 or in H = M4 × CP2 [?, E2]. Consider first the formulation of HO − H
duality.

1. Associativity also in the number theoretical sense becomes the fundamen-
tal dynamical principle if HO−H duality holds true [E2]. For a space-time
surface X4 ⊂ HO = M8 associativity is satisfied at space-time level if the
tangent space at each point of X4 is some hyper-quaternionic sub-space
HQ = M4 ⊂ M8. Also partonic 2-surfaces at the boundaries of causal
diamonds formed by pairs of future and past directed light-cones defining
the basic imbedding space correlate of zero energy state in zero energy on-
tology and light-like 3-surfaces are assumed to belong to HQ = M4 ⊂ HO.

2. HO −H duality requires something more. If the tangent spaces contain
the same preferred commutative and thus hyper-complex planeHC = M2,
the tangent spaces of X4 are parameterized by the points s of CP2 and
X4 ⊂ HO can be mapped to X4 ⊂M4×CP2 by assigning to a point of X4

regarded as point (m, e) of M4
0 ×E4 = M8 the point (m, s). Note that one

must also fix a preferred global hyper-quaternionic subspace M4
0 ⊂ M8

containing M2 to be not confused with the local tangent planes M4.

3. The preferred plane M2 can be interpreted as the plane of non-physical
polarizations so that the interpretation as a number theoretic analog of
gauge conditions posed in both quantum field theories and string models
is possible.

4. An open question is whether the resulting surface in H is a preferred
extremal of Kähler action. This is possible since the tangent spaces at
light-like partonic 3-surfaces are fixed to contain M2 so that the bound-
ary values of the normal derivatives of H coordinates are fixed and field
equations fix in the ideal case X4 uniquely and one obtains space-time
surface as the analog of Bohr orbit.

5. The light-like ”Higgs term” proportional to O = γkt
k appearing in the

generalized eigenvalue equation for the modified Dirac operator is an es-
sential element of TGD based description of Higgs mechanism. This term
can cause complications unless t is a covariantly constant light-like vec-
tor. Covariant constancy is achieved if t is constant light-like vector in M2.
The interpretation as a space-time correlate for the light-like 4-momentum
assignable to the parton might be considered.
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6. Associativity requires that the hyper-octonionic arguments of N -point
functions in HO description are restricted to a hyperquaternionic plane
HQ = M4 ⊂ HO required also by the HO − H correspondence. The
intersection M4∩ int(X4) consists of a discrete set of points in the generic
case. Partonic 3-surfaces are assumed to be associative and belong to M4.
The set of commutative points at the partonic 2-surface X2 is discrete in
the generic case whereas the intersection X3 ∩M2 consists of 1-D curves
so that the notion of number theoretical braid crucial for the p-adicization
of the theory as almost topological QFT is uniquely defined.

7. The preferred plane M2 ⊂M4 ⊂ HO can be assigned also to the definition
of N -point functions in HO picture. It is not clear whether it must be
same as the preferred planes assigned to the partonic 2-surfaces. If not,
the interpretation would be that it corresponds to a plane containing the
over all cm four-momentum whereas partonic planes M2

i would contain the
partonic four-momenta. M2 is expected to change at wormhole contacts
having Euclidian signature of the induced metric representing horizons and
connecting space-time sheets with Minkowskian signature of the induced
metric.

The presence of globally defined plane M2 and the flexibility provided by the
hyper-complex conformal invariance raise the hopes of achieving the lifting of
SC and SKM to H. At the light-cone boundary the light-like radial coordinate
can be lifted to a hyper-complex coordinate defining coordinate for M2. At X3

one can fix the light-like coordinate varying along the braid strands can be lifted
to some hyper-complex coordinate of M2 defined in the interior of X4. The total
four-momenta and color quantum numbers assignable to the SC and SKM
degrees of freedom are naturally identical since they can be identified as the
four-momentum of the partonic 2-surface X2 ⊂ X3 ∩ δM4

± ×CP2. Equivalence
Principle would emerge as an identity.

4.2.4 Questions about conformal weights

One can pose several non-trivial questions about conformal weights.

1. The negative SKM conformal weights of ground states for elementary par-
ticles [F3] remain to be understood in this framework. In the case of
light-cone boundary the natural value for ground state conformal weight
of a scalar field is −1/2 since this implies a complete analogy with a plane
wave with respect to the radial light-like coordinate rM with inner prod-
uct defined by a scale invariant integration measure drM/rM . If the coset
construction works same should hold true for SKM degrees of freedom for
a proper choice of the light-like radial coordinate. There are thus good
hopes that negative ground state conformal weights could be understood.

2. Further questions relate to the imaginary parts of ground state confor-
mal weights, which can be vanishing in principle. Do the ground state
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conformal weights correspond to the zeros of some zeta function- most
naturally the zeta function defined by generalized eigenvalues of the mod-
ified Dirac operator and satisfying Riemann hypothesis so that ground
state conformal weight would have real part -1/2? Do SC and SKM have
same spectrum of complex conformal weights as the coset construction
suggests? Does the imaginary part of the conformal weight bring in a new
degree of freedom having interpretation in terms of space-time correlate
for the arrow of time with the generalization of the phase conjugation of
laser physics representing the reversal of the arrow of geometric time?

3. The opposite light-cone boundaries of the causal diamond bring in mind
the hemispheres of S2 in ordinary conformal theory. In ordinary conformal
theory positive/negative powers of z correspond to these hemispheres.
Could it be that the radial conformal weights are of opposite sign and of
same magnitude for the positive and negative energy parts of zero energy
state?

4.2.5 Further questions

There are still several open questions.

1. Is it possible to define hyper-quaternionic variants of the superconformal
algebras in both H and HO or perhaps only in HO. A positive answer
to this question would conform with the conjecture that the geometry of
”world of classical worlds” allows Hyper-Kähler property in either or both
pictures [B3].

2. How this picture relates to what is known about the extremals of field
equations [D1] characterized by generalized Hamilton-Jacobi structure
bringing in mind the selection of preferred M2?

3. Is this picture consistent with the views about Equivalence Principle and
its possible breaking based on the identification of gravitational four-
momentum in terms of Einstein tensor is interesting [D3]?

4.3 Brief summary of super-conformal symmetries in par-
tonic picture

The notion of conformal super-symmetry is very rich and involves several non-
trivial aspects, and as the following discussions shows, one could assign the
attribute super-conformal to several symmetries. In the following I try to sum up
what I see as important. What is new is that it is now possible to tie everything
to the fundamental description in terms of the parton level action principle and
provide a rigorous justification and precise realization for the claimed super-
conformal symmetries.
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4.3.1 Super-canonical symmetries

Super-canonical symmetries correspond to the isometries of the configuration
space CH (the world of classical worlds) and are induced from the correspond-
ing symmetries of δH± ≡ δM4

± × CP2. The explicit representations have been
constructed for both 2-D and stringy options. The most stringent option hav-
ing strong support from various considerations is that single particle conformal
weights are of form 1/2 + i

∑
k nkyk, where sk = 1/2 + iyk is zero of Riemann

zeta. The construction of many particle conformally bound states for poly-zetas
leads to the same spectrum for bound states and predicts that only 2- and 3-
parton bound states are irreducible. On the other hand, conformal weights are
additive for the (anti)commutators of (super)Hamiltonians and gives thus all
weights of form s = n+ i

∑
k nkyk.

The interpretation of this picture is not obvious.

1. The first interpretation would be that also other conformal weights are
possible but that the commutator and anti-commutator algebras of super-
canonical algebra containing conformal weights Re(s) = k/2, k > 1, rep-
resent gauge degrees of freedom. The sub-Virasoro algebra generated by
Ln, n > 0, would generate these conformal weights which would suggest
that Ln, n > 0, but not L0, must annihilate the physical states. The
problem is that this makes p-adic thermodynamics impossible.

2. p-Adic mass calculations would suggest that Super Kac-Moody Virasoro
(SKMV) generators Ln, n > 0, do not correspond to pure gauge degrees
of freedom, and a more general interpretation would be that all these
conformal weights are possible and represent genuine physical degrees of
freedom. The extension of the algebra using the standard assumption
L−n = L†n would bring in also the conformal weights Re(s) = −k/2,
k ≥ 1. p-adic mass calculations would encourage to think that it is super-
canonical (SC) generators L−n, n > 0, which annihilate tachyonic ground
states and stabilize them against tachyonic p-adic thermodynamics. The
physical ground state with a vanishing conformal weight would be con-
structed from this tachyonic ground state and p-adic thermodynamics for
SKMV generators Ln, n > 0, would apply to it.

3. In the discrete variant of theory required by number theoretic universality
all stringy sub-manifolds of X2 corresponding to the inverse images of
z = ζ(n/2 + i

∑
k nkyk) ∈ S2 ⊂ CP2 would be realized so that one would

have probability amplitude in the discrete set of these number theoretic
strings. SKMV generators Ln and Gr would excite n > 0 ”shells” in this
structure whereas SC generators would generate n < 0 shells.

4. Also the trivial zeros sn = −2n, n > 0, of Riemann Zeta could correspond
to physically interesting conformal weights for the super-canonical algebra
(at least). In the region r ≥ r0 the function r−2n approaches zero and these
powers are square integrable in this region. The orthogonality with other
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states could be achieved by arranging things suitably in other degrees of
freedom [B2]. Since ζ is real also along real line, the set of even integers∑
k nksk, nk ∈ Z is mapped by ζ to the same real line of S2 ⊂ CP2 as

non-trivial zeros of ζ. p-Adic mass calculations would suggest that states
with conformal weight smin = −2nmax (at least these) could represent
null states annihilated by L−n, n > 0.

4.3.2 Bosonic super Kac-Moody algebra

The generators of bosonic super Kac-Moody algebra leave the light-likeness
condition

√
g3 = 0 invariant. This gives the condition

δgαβCof(gαβ) = 0 , (54)

Here Cof refers to matrix cofactor of gαβ and summation over indices is under-
stood. The conditions can be satisfied if the symmetries act as combinations of
infinitesimal diffeomorphisms xµ → xµ+ξµ of X3 and of infinitesimal conformal
symmetries of the induced metric

δgαβ = λ(x)gαβ + ∂µgαβξ
µ + gµβ∂αξ

µ + gαµ∂βξ
µ . (55)

1. Ansatz as an X3-local conformal transformation of imbedding space

Write δhk as a super-position of X3-local infinitesimal diffeomorphisms of
the imbedding space generated by vector fields JA = jA,k∂k:

δhk = cA(x)jA,k . (56)

This gives

cA(x)
[
Dkj

A
l +Dlj

A
k

]
∂αh

k∂βh
l + 2∂αcAhkljA,k∂βhl

= λ(x)gαβ + ∂µgαβξ
µ + gµβ∂αξ

µ + gαµ∂βξ
µ . (57)

If an X3-local variant of a conformal transformation of the imbedding space is
in question, the first term is proportional to the metric since one has

Dkj
A
l +Dlj

A
k = 2hkl . (58)

The transformations in question includes conformal transformations of H± and
isometries of the imbedding space H.

The contribution of the second term must correspond to an infinitesimal
diffeomorphism of X3 reducible to infinitesimal conformal transformation ψµ:
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2∂αcAhkljA,k∂βhl = ξµ∂µgαβ + gµβ∂αξ
µ + gαµ∂βξ

µ . (59)

2. A rough analysis of the conditions

One could consider a strategy of fixing cA and solving solving ξµ from the
differential equations. In order to simplify the situation one could assume that
gir = grr = 0. The possibility to cast the metric in this form is plausible since
generic 3-manifold allows coordinates in which the metric is diagonal.

1. The equation for grr gives

∂rcAhklj
Ak∂rh

k = 0 . (60)

The radial derivative of the transformation is orthogonal to X3. No con-
dition on ξα results. If cA has common multiplicative dependence on
cA = f(r)dA by a one obtains

dAhklj
Ak∂rh

k = 0 . (61)

so that JA is orthogonal to the light-like tangent vector ∂rhk X3 which
is the counterpart for the condition that Kac-Moody algebra acts in the
transversal degrees of freedom only. The condition also states that the
components gri is not changed in the infinitesimal transformation.

It is possible to choose f(r) freely so that one can perform the choice
f(r) = rn and the notion of radial conformal weight makes sense. The de-
pendence of cA on transversal coordinates is constrained by the transver-
sality condition only. In particular, a common scale factor having free
dependence on the transversal coordinates is possible meaning that X3-
local conformal transformations of H are in question.

2. The equation for gri gives

∂rξ
i = ∂rcAhklj

Akhij∂jh
k . (62)

The equation states that gri are not affected by the symmetry. The radial
dependence of ξi is fixed by this differential equation. No condition on ξr

results. These conditions imply that the local gauge transformations are
dynamical with the light-like radial coordinate r playing the role of the
time variable. One should be able to fix the transformation more or less
arbitrarily at the partonic 2-surface X2.

85



3. The three independent equations for gij give

ξα∂αgij + gkj∂iξ
k + gki∂jξ

k = ∂icAhklj
Ak∂jh

l . (63)

These are 3 differential equations for 3 functions ξα on 2 independent
variables xi with r appearing as a parameter. Note however that the
derivatives of ξr do not appear in the equation. At least formally equa-
tions are not over-determined so that solutions should exist for arbitrary
choices of cA as functions of X3 coordinates satisfying the orthogonality
conditions. If this is the case, the Kac-Moody algebra can be regarded as
a local algebra in X3 subject to the orthogonality constraint.

This algebra contains as a subalgebra the analog of Kac-Moody algebra
for which all cA except the one associated with time translation and fixed
by the orthogonality condition depends on the radial coordinate r only.
The larger algebra decomposes into a direct sum of representations of this
algebra.

3. Commutators of infinitesimal symmetries

The commutators of infinitesimal symmetries need not be what one might
expect since the vector fields ξµ are functionals cA and of the induced metric and
also cA depends on induced metric via the orthogonality condition. What this
means that jA,k in principle acts also to φB in the commutator [cAJA, cBJB ].

[
cAJ

A, cBJ
B
]

= cAcBJ
[A,B] + JA ◦ cBJB − JB ◦ cAJA , (64)

where ◦ is a short hand notation for the change of cB induced by the effect of
the conformal transformation JA on the induced metric.

Luckily, the conditions in the case grr = gir = 0 state that the components
grr and gir of the induced metric are unchanged in the transformation so that
the condition for cA resulting from grr component of the metric is not affected.
Also the conditions coming from gir = 0 remain unchanged. Therefore the
commutation relations of local algebra apart from constraint from transversality
result.

The commutator algebra of infinitesimal symmetries should also close in
some sense. The orthogonality to the light-like tangent vector creates here a
problem since the commutator does not obviously satisfy this condition auto-
matically. The problem can be solved by following the recipes of non-covariant
quantization of string model.

1. Make a choice of gauge by choosing time translation P 0 in a preferred M4

coordinate frame to be the preferred generator JA0 ≡ P 0, whose coefficient
ΦA0 ≡ Ψ(P 0) is solved from the orthogonality condition. This assumption
is analogous with the assumption that time coordinate is non-dynamical in
the quantization of strings. The natural basis for the algebra is obtained
by allowing only a single generator JA besides P 0 and putting dA = 1.
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2. This prescription must be consistent with the well-defined radial conformal
weight for the JA 6= P 0 in the sense that the proportionality of dA to rn

for JA 6= P 0 must be consistent with commutators. SU(3) part of the
algebra is of course not a problem. From the Lorentz vector property of
P k it is clear that the commutators resulting in a repeated commutation
have well-defined radial conformal weights only if one restricts SO(3, 1)
to SO(3) commuting with P 0. Also D could be allowed without losing
well-defined radial conformal weights but the argument below excludes it.
This picture conforms with the earlier identification of the Kac-Moody
algebra.

Conformal algebra contains besides Poincare algebra and the dilation
D = mk∂mk the mutually commuting generators Kk = (mrmr∂mk −
2mkml∂ml)/2. The commutators involving added generators are

[
D,Kk

]
= −Kk ,

[
D,P k

]
= P k ,[

Kk,Kl
]

= 0 ,
[
Kk, P l

]
= mklD −Mkl .

(65)

From the last commutation relation it is clear that the inclusion of Kk

would mean loss of well-defined radial conformal weights.

3. The coefficient dm0/dr of Ψ(P 0) in the equation

Ψ(P 0)
dm0

dr
= −JAkhkl∂rhl

is always non-vanishing due to the light-likeness of r. Since P 0 commutes
with generators of SO(3) (but not with D so that it is excluded!), one can
define the commutator of two generators as a commutator of the remaining
part and identify Ψ(P 0) from the condition above.

4. Of course, also the more general transformations act as Kac-Moody type
symmetries but the interpretation would be that the sub-algebra plays the
same role as SO(3) in the case of Lorentz group: that is gives rise to gen-
eralized spin degrees of freedom whereas the entire algebra divided by this
sub-algebra would define the coset space playing the role of orbital degrees
of freedom. In fact, also the Kac-Moody type symmetries for which cA
depends on the transversal coordinates of X3 would correspond to orbital
degrees of freedom. The presence of these orbital degrees of freedom ar-
ranging super Kac-Moody representations into infinite multiplets labelled
by function basis for X2 means that the number of degrees of freedom is
much larger than in string models.

5. It is possible to replace the preferred time coordinate m0 with a preferred
light-like coordinate. There are good reasons to believe that orbifold sin-
gularity for phases of matter involving non-standard value of Planck con-
stant corresponds to a preferred light-ray going through the tip of δM4

±.
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Thus it would be natural to assume that the preferred M4 coordinate
varies along this light ray or its dual. The Kac-Moody group SO(3)×E3

respecting the radial conformal weights would reduce to SO(2)×E2 as in
string models. E2 would act in tangent plane of S2

± along this ray defining
also SO(2) rotation axis.

4. Hamiltonians

The action of these transformations on Chern-Simons action is well-defined
and one can deduce the conserved quantities having identification as config-
uration space Hamiltonians. Hamiltonians also correspond to closed 2-forms.
The condition that the Hamiltonian reduces to a dual of closed 2-form is satis-
fied because X2-local conformal transformations of M4

± × CP2 are in question
(X2-locality does not imply any additional conditions).

5. Action on spinors

One can imagine two interpretations for the action of generalized Kac-Moody
transformations on spinors.

1. Both SO(3) and SU(3) rotations have a standard action as spin rotation
and electro-weak rotation allowing to define the action of the Kac-Moody
algebra JA on spinors. This action is not consistent with the generalized
eigenvalue equation unless one restricts it to X2 at δH±.

2. Since Kac-Moody generator performs a local spinor rotation and increases
the conformal weight by n units, the simplest possibility is that the action
of transformation adds to Ψλ with λ = 1/2 + i

∑
k nkyk, a term with

eigenvalue λ + n and having JAΨλ as initial values at X2. This would
make natural the interpretation as a gauge transformation apart from the
effects caused by the possible central extension term.

6. How central extension term could emerge?

The central extension term of Kac-Moody algebra could correspond to a
symplectic extension which can emerge from the freedom to add a constant
term to Hamiltonians as in the case of super-canonical algebra. The expression
of the Hamiltonians as closed forms could allow to understand how the central
extension term emerges.

In principle one can construct a representation for the action of Kac-Moody
algebra on fermions a representations as a fermionic bilinear and the central
extension of Kac-Moody algebra could emerge in this construction just as it
appears in Sugawara construction.

4.3.3 Fermionic Kac-Moody algebra in spin and electro-weak de-
grees of freedom

The action of spin rotations and electro-weak rotations can be identified in
terms of the group SU(2) × SU(2) × U(1) associated inherently with N =
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4 super-conformal symmetry. The action on zero modes and eigen modes Ψ
is straightforward to write as multiplication on the initial values at X2 and
assuming that λ in the generalized eigenvalue equation is replaced by λ+ n.

Fermionic super-generators correspond naturally to zero modes and eigen
modes of the modified Dirac operator labelled by the radial conformal weights
λ = 1/2 + i

∑
k nkyk and by the quantum numbers labelling the dependence

on transversal degrees of freedom. The real part of the conformal weight would
corresponds for DΨ = 0 to ground state conformal weight h = 0( Ramond) and
to h = 1/2 for λ 6= 0 (N-S). That also bosonic super-canonical Hamiltonians can
have half odd integer conformal weight is however in conflict with the intuition
that half-odd integer conformal weights correspond to states with odd fermion
number.

For Ramond representations the lines ζ(Re(s) = n) ⊂ S2, n ≥ 0, would
represent the conformal weights at space-time level and for N-S representations
the lines would correspond to ζ(Re(s) = n+ 1/2) ⊂ S2. If also trivial zeros are
possible they would correspond to the lines ζ(Re(s) = n− 2k) ⊂ S2, k = 1, 2, ...

4.3.4 Radial Super Virasoro algebras

The radial Super Virasoro transformations act on both δH± and partonic 3-
surface X3 and are consistent with the freedom to choose the basis of H±
Hamiltonians and the eigenmode basis of the modified Dirac operator by a re-
scaling the light-like vector (tk or more plausibly, its dual nk) appearing in the
definition of the generalized eigenvalue equation.

In the partonic sector a possible interpretation is as local diffeomorphisms
of X3. These transformations do not however leave X3 invariant as a whole,
which brings in some delicacies. In the case of δH± the tip of the future light-
cone remains invariant only for n ≥ 0 and r = ∞ only for n ≤ 0. These
facts could explain why only the generators Ln, n < 0 (or n < 0 depending
on whether positive or negative energy component of zero energy state is in
question) annihilate the ground states.

One can assign to the Virasoro algebra of H± Hamiltonians as Noether
charges defined by current Π0

kj
Ak which reduces to a dual of a closed 2-form in

the case of H± because its symplectic form annihilates jAk. The transformations
associated with X3 correspond to a unique shift of X2 in the light-like direction
by δhk = rn∂rh

k so that the Hamiltonian is well-defined and reduces to a value
of a closed 2-form so that the stringy picture emerges.

The corresponding fermionic super HamiltoniansGr = νrnΓrΨ anti-commute
to these as is easy to see by noticing that the light-like radial gamma matrices Γr
appear in the combination Γrγ0Γr = γ0 in the anti-commutator so that it does
not vanish. One can consider also more general fermionic generators obtained
by replacing right-handed neutrino spinor with an arbitrary solution of DΨ = 0
which is eigen spinor of JklΣkl appearing in the fermionic anti-commutation
relations. This would give rise to a full N = 4 super-conformal symmetry of
Ramond type but having infinite degeneracy due to the dependence on transver-
sal coordinates of X3. If one allows also the solutions of DΨ = λΨ one obtains
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counterparts of N-S type representations with a similar degeneracy.
It must be emphasized that four-momentum does not appear neither in the

representations of Super Virasoro generators as it does in string models and this
is consistent with the Lorentz invariant identification of mass squared as vacuum
expectation value of the net conformal weight. Also the problems with tachyons
are avoided. Four-momentum could creep in if one had Sugawara type repre-
sentation of Super Virasoro generators in terms of Kac-Moody generators which
indeed contain also translation generators now. Note also that the stringy con-
formal weight would be associated with partonic 2-surface, whereas radial con-
formal weight is associated with its light-like orbit. Furthermore, the origin of
the radial super-conformal symmetries is light-likeness rather than stringy char-
acter. It is not clear whether it is useful to assign the usual conformal weights
with the conformal fields at X2 and whether the stringy anti-commutation re-
lations for Ψ force this kind of assignment.

4.3.5 Gauge super-symmetries associated with the generalized eigen-
value equation for D

Zero modes which are annihilated by the operator T = tkγk or N = nkγk. tk

(nk) is the light-like appearing in the generalized eigenvalue equation for the
modified Dirac operator. tk is parallel to X3 and nk, which corresponds to
the more plausible option, is obtained by changing the direction of the spatial
part of tk in the preferred M4 coordinate frame associated with the space-time
sheet (the rest system or number theoretically determined M4 time). nk defines
inwards directed tangent vector to the space-time sheet containing X3. The zero
modes of the modified Dirac operator annihilated by T (N) act as super gauge
symmetries for the generalized eigen modes of the generalized Dirac operator.
They do not depend on r and thus have a vanishing conformal weight.

The freedom to choose the scaling of tk (nk) rather freely gives rise to a
further symmetry which does not affect the eigenvalue spectrum but modifies
the eigen modes. This symmetry is definitely a pure gauge symmetry.

4.3.6 What about ordinary conformal symmetries?

Ordinary conformal symmetries acting on the complex coordinate of X2 have
not yet been discussed. These symmetries involve the dependence on the induced
metric through the moduli of characterizing the conformal structure of X2.
Stringy picture would suggest in the case of a spherical topology that the zero
modes and eigen modes of Ψ are proportional to zn at X2. Only n ≥ 0 mode
would be non-singular at the northern hemisphere and n ≤ 0 at the southern
hemisphere and the eigen modes are non-normalizable.

One cannot glue these modes together at equator unless one assumes the be-
havior zn, n ≥ 0, on the northern hemisphere and z−n, n ≥ 0, on the southern
hemisphere. The identification Ψ+(z) = Ψ†−(z) (z → z in Hermitian conju-
gation) at equator would state that ”positive energy” particle at the northern
hemisphere corresponds to a negative energy antiparticle at the southern hemi-
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sphere. The assumption that energy momentum generators T+(z) and T−(z)
are related in the same manner at equator gives Ln = L†−n as required. Second
candidate for the basis are spherical harmonics which are eigenstates of L0−L0

defining angular momentum operator Lz but they do not possess well defined
conformal weights.

The radial time evolution for the Kac-Moody generators does not commute
with L0 whereas well-defined radial conformal weights are possible. This would
support the view that the conformal weight associated with X2 degrees of free-
dom does not contribute to the mass squared. If this picture is correct, L0

would label different SKM representations and play a role similar to that in
conformal field theories for critical systems.

4.3.7 How to interpret the overall sign of conformal weight?

The overall sign of conformal weight can be changed by replacing r with 1/r
and the region r > r0 with r < r0 of δH± or of partonic 3-surface. The earlier
idea that the conformal weights associated with the super-conformal algebras
assignable to δH± and to light-like partonic 3-surfaces have opposite signs would
allow to construct representations of super-canonical algebra by constructing a
tachyonic ground state using super-canonical generators and its excitations using
super Super-Kac Moody generators as in super string models.

There is however an objection against this idea. The partons at δH± would
have a finite distance from the tip of the light cone at all points where they
correspond to non-vacuum extremals, so that the phase transitions changing
the value of Planck constant should always occur via vacuum extremals. This
would not allow the leakage of Kähler magnetic flux between different sectors of
imbedding space. The cautious conclusion is that at least in the super-canonical
sector both r > r0 and r < r0 sectors related by the conformal transformation
r → 1/r must be allowed and correspond to positive and negative values for the
radial super-conformal weights.

In zero energy ontology particle reactions correspond to zero energy states
which at space-time level carry positive energy particles at the end of world in
geometric past and negative energy particles at the end of world in the geometric
future. Also conformal weights are of opposite sign so that vanishing of the net
conformal weights holds true only for zero energy states in accordance with the
spirit of p-adic mass calculations. If the states of geometric past correspond
to positive (negative) super Kac-Moody (super-canonical) conformal weights,
the scattering could be regarded as a process leading from the region r > r0

at δM4
+0 to the region r < r0 at δM4

−. At partonic level the incoming partons
would correspond to the region r < r0 and outgoing partons to the region r > r0,
which conforms with the idea that the final state can partons can be arbitrary
far in the geometric future.

In certain sense this picture would reproduce big ban-big crush picture at the
level of super-canonical algebra. r < r0 means that partons can be arbitrarily
near to the tip of δM4

− representing the final singularity whereas r > r0 for δM4
+

would be the counterpart for big bang.
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4.3.8 Absolute extremum property for Kähler action implies dynam-
ical Kac-Moody and super conformal symmetries

The identification of the criterion selecting the preferred extremal of Kähler
action defining space-time surface as a counterpart of Bohr orbit has been a
long standing challenge. The first guess was that an absolute minimum is in
question. The number theoretic theoretic picture, in particular HO−H duality
[E2] resolves the problem by assigning to each point of X4 a preferred plane
M2, which also fixes the boundary conditions for the field equations at light-like
partonic 3-surfaces. The still open questions are whether the H images of hyper-
quaternionic 4-surfaces of HO = M8 are indeed extremals of Kähler action and
whether these preferred extremals satisfy absolute extremum property. Be as
it may, the following argument suggests that absolute extremum property gives
rise to additional symmetries.

The extremal property for Kähler action with respect to variations of time
derivatives of initial values keeping hk fixed at X3 implies the existence of an
infinite number of conserved charges assignable to the small deformations of the
extremum and to H isometries. Also infinite number of local conserved super
currents assignable to second variations and to covariantly constant right handed
neutrino are implied. The corresponding conserved charges vanish so that the
interpretation as dynamical gauge symmetries is appropriate. This result pro-
vides strong support that the local extremal property is indeed consistent with
the almost-topological QFT property at parton level.

The starting point are field equations for the second variations. If the action
contain only derivatives of field variables one obtains for the small deformations
δhk of a given extremal

∂αJ
α
k = 0 ,

Jαk =
∂2L

∂hkα∂h
l
β

δhlβ , (66)

where hkα denotes the partial derivative ∂αhk. A simple example is the action for
massless scalar field in which case conservation law reduces to the conservation
of the current defined by the gradient of the scalar field. The addition of mass
term spoils this conservation law.

If the action is general coordinate invariant, the field equations read as

DαJ
α,k = 0 (67)

where Dα is now covariant derivative and index raising is achieved using the
metric of the imbedding space.

The field equations for the second variation state the vanishing of a covariant
divergence and one obtains conserved currents by the contraction this equation
with covariantly constant Killing vector fields jkA ofM4 translations which means
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that second variations define the analog of a local gauge algebra in M4 degrees
of freedom.

∂αJ
A,α
n = 0 ,

JA,αn = Jα,kn jAk . (68)

Conservation for Killing vector fields reduces to the contraction of a symmetric
tensor with Dkjl which vanishes. The reason is that action depends on induced
metric and Kähler form only.

Also covariantly constant right handed neutrino spinors ΨR define a collec-
tion of conserved super currents associated with small deformations at extremum

Jαn = Jα,kn γkΨR ,

. (69)

Second variation gives also a total divergence term which gives contributions
at two 3-dimensional ends of the space-time sheet as the difference

Qn(X3
f )−Qn(X3) = 0 ,

Qn(Y 3) =
∫
Y 3
d3xJn , Jn = J tkhklδh

l
n . (70)

The contribution of the fixed endX3 vanishes. For the extremum with respect to
the variations of the time derivatives ∂thk at X3 the total variation must vanish.
This implies that the charges Qn defined by second variations are identically
vanishing

Qn(X3
f ) =

∫
X3

f

Jn = 0 . (71)

Since the second end can be chosen arbitrarily, one obtains an infinite number of
conditions analogous to the Virasoro conditions. The analogs of unbroken loop
group symmetry for H isometries and unbroken local super symmetry generated
by right handed neutrino result. Thus extremal property is a necessary condition
for the realization of the gauge symmetries present at partonic level also at the
level of the space-time surface. The breaking of super-symmetries could perhaps
be understood in terms of the breaking of these symmetries for light-like partonic
3-surfaces which are not extremals of Chern-Simons action.

4.4 Large N = 4 SCA is the natural option

The arguments below support the view that ”large” N = 4 SCA is the natural
algebra in TGD framework.
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4.4.1 How N = 4 super-conformal invariance emerges from the par-
ton level formulation of quantum TGD?

The discovery of the formulation of TGD as a N = 4 almost topological super-
conformal QFT with light-like partonic 3-surfaces identified as basic dynamical
objects led to the final understanding of super-conformal symmetries and their
breaking. N = 4 super-conformal algebra corresponds to the maximal algebra
with SU(2)×U(2) Kac-Moody algebra as inherent fermionic Kac-Moody algebra
having interpretation in terms of rotations and electro-weak gauge group.

4.4.2 Large N = 4 SCA algebra

Large N = 4 super-conformal symmetry with SU(2)+ × SU(2)− × U(1) in-
herent Kac-Moody symmetry seems to define the fundamental partonic super-
conformal symmetry in TGD framework. In the case of SKM algebra the groups
would act on induced spinors with SU(2)+ representing spin rotations and
SU(2)− × U(1) = U(2)ew electro-weak rotations. In super-canonical sector
the action would be geometric: SU(2)+ would act as rotations on light-cone
boundary and U(2) as color rotations leaving invariant a preferred CP2 point.

A concise discussion of this symmetry with explicit expressions of commu-
tation and anticommutation relations can be found in [42]. The representations
of SCA are characterized by three central extension parameters for Kac-Moody
algebras but only two of them are independent and given by

k± ≡ k(SU(2)±) ,

k1 ≡ k(U(1)) = k+ + k− . (72)

The central extension parameter c is given as

c =
6k+k−
k+ + k−

. (73)

and is rational valued as required.
A much studied N = 4 SCA corresponds to the special case

k− = 1 , k+ = k + 1 , k1 = k + 2 ,

c =
6(k + 1)
k + 2

. (74)

c = 0 would correspond to k+ = 0, k− = 1, k1 = 1. Central extension would be
trivial in rotational degrees of freedom but non-trivial in U(2)ew. For k+ > 0
one has k1 = k+ +k− 6= k+. A possible interpretation is in terms of electro-weak
symmetry breaking with k+ > 0 signalling for the massivation of electro-weak
gauge bosons.
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An interpretation consistent with the general vision about the quantization
of Planck constants is that k+ and k− relate directly to the integers na and
nb characterizing the values of M4

± and CP2 Planck constants via the formulas
na = k+ + 2 and nb = k− + 2. This would require k± ≥ 1 for Gi a finite
subgroup of SU(2) (”anyonic” phases). In stringy phases with Gi = SU(2) for
i = a or i = b or for both, ki could also vanish so that also ni = 2 corresponding
to A2 ADE diagram and SU(2) Kac-Moody algebra becomes possible. In the
super-canonical sector k+ = 0 would mean massless gluons and k− = k1 that
U(2) ⊂ SU(3) and possibly entire SU(3) represents an unbroken symmetry.

4.4.3 About breaking of large N = 4 SCA

Partonic formulation predicts that large N = 4 SCA is a broken symmetry, and
the first guess is that breaking could be thought to occur via several steps. First
a ”small” N = 4 SCA with Kac-Moody group SU(2)×U(1) would result. The
next step would lead to N = 2 SCA and the final step to N = 0 SCA. Several
symmetry breaking scenarios are possible.

a) SU(2) × U(1) could correspond to electro-weak gauge group such that
rotational degrees of freedom are frozen dynamically by the massivation of the
corresponding excitations. This interpretation could apply in stringy phase: for
cosmic strings rotational excitations are indeed hyper-massive.

b) The interpretation of SU(2) as spin rotation group and U(1) as elec-
tromagnetic gauge group conforms with the general vision about electroweak
symmetry breaking in non-stringy phase. The interpretation certainly makes
sense for covariantly constant right handed neutrinos for which spin direction is
free.

The next step in the symmetry breaking sequence would be N = 2 SCA with
U(1) ⊂ SU(2)× U(2) sub-algebra. The interpretation could be as electro-weak
symmetry breaking in the stringy sector (cosmic strings) so that U(1) would
correspond to em charge or possibly weak isospin.

4.4.4 Relationship to super-strings and M-theory

The (4,4) signature characterizing N = 4 SCA topological field theory is not
a problem since in TGD framework the target space becomes a fictive concept
defined by the Cartan algebra. Both M4×CP2 decomposition of the imbedding
space and space-time dimension are crucial for the 2 + 2 + 2 + 2 structure of
the Cartan algebra, which together with the notions of the configuration space
and generalized coset representation formed from super Kac-Moody and super-
canonical algebras guarantees N = 4 super-conformal invariance.

Including the 2 gauge degrees of freedom associated with M2 factor of
M4 = M2 × E2 the critical dimension becomes D = 10 and and including
the radial degree of light-cone boundary the critical dimension becomes D = 11
of M-theory. Hence the fictive target space associated with the vertex operator
construction corresponds to a flat background of super-string theory and flat
background of M-theory with one light-like direction. From TGD point view
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the difficulties of these approaches are due to the un-necessary assumption that
the fictive target space defined by the Cartan algebra corresponds to the physi-
cal imbedding space. The flatness of the fictive target space forces to introduce
the notion of spontaneous compactification and dynamical imbedding space and
this in turn leads to the notion of landscape.

4.4.5 Questions

A priori one can consider 3 different options concerning the identification of
quarks and leptons.

1. Could also quarks define N = 4 superconformal symmetry?

One can ask, whether the construction could be extended by allowing H-
spinors of opposite chirality to have leptonic quantum numbers so that free
quarks would have integer charge. The construction does not work. The direct
sum of N = 4 SCAs can be realized but N = 8 algebra would require SO(7)
rotations mixing states with different fermion numbers: for N = 4 SCA this
is not needed. Furthermore, only N < 4 super-conformal algebras allow an
associative realization and N = 8 non-associative realization discovered first by
Englert exists only at the limit when Kac-Moody central extension parameter k
becomes infinite (this corresponds to a critical phase formally and q = 1 Jones
inclusion). This is not enough for the purposes of TGD and number theoretic
vision strongly supports ”small” N = 4 SCA.

2. Integer charged leptons and fractionally charged quarks?

Second option would be leptons and fractionally charged quarks with N = 4
SCA in leptonic sector. It is indeed possible to realize both quark and lepton
spinors as super generators of super affinized quaternion algebras (a generaliza-
tion of super-Kac Moody algebras) so that the fundamental spectrum generat-
ing algebra is obtained. Quarks with their natural charges can appear only in
n = 3, k = 1 phase together with fractionally charged leptons. Leptons in this
phase would have strong interactions with quarks. The penetration of lepton
into hadron would give rise to this kind of situation. Leptons can indeed move
in triality 1 states since 3-fold covering of CP2 points by M4 points means that
3 full rotations for the phase angle of CP2 complex coordinate corresponds to
single 2π rotation for M4 point.

Hadron like states would correspond to the lowest possible Jones inclusion
characterized by n=3 and the subgroup A2 (Z3) of SU(2). The work with quan-
tization of Planck constant had already earlier led to the realization that ADE
Dynkin diagrams assignable to Jones inclusions indeed correspond to gauge
groups [A8]: in particular, A2 corresponds to color group SU(3). Infinite hi-
erarchy of hadron like states with n = 3, 4, 5... quarks or leptons is predicted
corresponding to the hierarchy of Jones inclusions, and I have already earlier
proposed that this hierarchy should be crucial for the understanding of living
matter [M3]. For states containing quarks n would be multiple of 3.

One can understand color confinement of quarks as absolute if one accepts
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the generalization of the notion of imbedding space forced by the quantiza-
tion of Planck constant. Ordinary gauge bosons come in two varieties depend-
ing on whether their couplings are H-vectorial or H-axial. Strong interactions
inside hadrons could be also interpreted as H-axial electro-weak interactions
which have become strong (presumably because corresponding gauge bosons
are massless) as is clear from the fact that arbitrary high n-point functions are
non-vanishing in the phases with q 6= 1. Already earlier the so called HO-H
duality inspired by the number theoretical vision [E2] led to the same proposal
but for ordinary electro-weak interactions which can be also imagined in the
scenario in which only leptons are fundamental fermions.

3. Quarks as fractionally charged leptons?

For the third option only leptons would appear as free fermions. The dra-
matic prediction would be that quarks would be fractionally charged leptons. It
is however not clear whether proton can decay to positron plus something (recall
the original erratic interpretation of positron as proton by Dirac!): lepton num-
ber fractionization meaning that baryon consists of three positrons with fermion
number 1/3 might allow this. If not, then only the interactions mediated by
the exchanges of gauge bosons (vanishing lepton number is essential) between
worlds corresponding to different Jones inclusions are possible and proton would
be stable.

There are however also objections. In particular, the resulting states are not
identical with color partial waves assignable to quarks and the nice predictions
of p-adic mass calculations for quark and hadron masses might be lost. Hence
the cautious conclusion is that the original scenario with integer charged quarks
predicting confinement automatically is the correct one.

4.5 How could exotic Kac-Moody algebras emerge from
Jones inclusions?

Also other Kac-Moody algebras than those associated with the basic symmetries
of quantum TGD could emerge from Jones inclusions. The interpretation would
be the TGD is able to mimic various conformal field theories. The discussion is
restricted to Jones inclusions defined by discrete groups acting in CP2 degrees
of freedom in TGD framework but the generalization to the case of M4 degrees
of freedom is straightforward.

4.5.1 M : N = β < 4 case

The first situation corresponds to M : N = β < 4 for which a finite subgroup
G ⊂ SU(2)L defines Jones inclusion NG ⊂ MG, with G commuting with the
Clifford algebra elements creating physical states. N corresponds to a subal-
gebra of the entire infinite-dimensional Clifford algebra Cl for which one 8-D
Clifford algebra factor identifiable as Clifford algebra of the imbedding space is
replaced with Clifford algebra of M4.
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Each M4 point corresponds to G orbit in CP2 and the order of maximal
cyclic subgroup of G defines the integer n defining the quantum phase q =
exp(iπ/n). In this case the points in the covering give rise to a representation
of G defining multiplets for Kac-Moody group Ĝ assignable to G via the ADE
diagram characterizing G using McKay correspondence. Partonic boundary
component defines the Riemann surface in which the conformal field theory with
Kac Moody symmetry is defined. The formula n = k+hĜ would determine the
value of Kac-Moody central extension parameter k. The singletness of fermionic
oscillator operators with respect to G would be compensated by the emergence
of representations of G realized in the covering of M4.

4.5.2 M : N = β = 4 case

Second situation corresponds to β = 4. In this case the inclusions are classi-
fied by extended ADE diagrams assignable to Kac Moody algebras. The in-
terpretation n = k + hG assigning the quantum phase to SU(2) Kac Moody
algebra corresponds to the Jones inclusion N Ĝ ⊂ MĜ of configuration space
spinors for Ĝ = SU(2)L with index M : N = 4 and trivial quantum phase
q = 1. The Clifford algebra elements in question would be products of fermionic
oscillator operators having vanishing SU(2)L quantum numbers but arbitrary
U(1)R quantum numbers if the identification Ĝ = SU(2)L is correct. Thus
only right handed fermions carrying homological magnetic charge would be al-
lowed and obviously these fermions must behave like massless particles so that
β < 4 could be interpreted in terms of massivation. The ends of cosmic strings
X2 × S2 ⊂ M4 × CP2 would represent an example of this phase having only
Abelian electro-weak interactions.

According to the proposal of [A8] the finite subgroup G ⊂ SU(2) defining
the quantum phase emerges from the effective decomposition of the geodesic
sphere S2 ⊂ CP2 to a lattice having S2/G as the unit cell. The discrete wave
functions in the lattice would give rise to SU(2)L ⊃ G-multiplets defining the
Kac Moody representations and S2/G would represent the 2-dimensional Rie-
mannsurface in which the conformal theory in question would be defined. Quan-
tum phases would correspond to the holonomy of S2/G. Therefore the singlet-
ness in fermionic degrees of freedom would be compensated by the emergence
of G- multiplets in lattice degrees of freedom.

4.6 The M4 local variants of super conformal algebras

The M4 local versions of super conformal algebras bring in a completely new
mathematical element allowing to unify string model type conformal algebras
and conformal algebras appearing in statistical physics so that stringy mass
formula can be seen as identification of M4 conformal weight with ordinary
conformal weight instead of interpretation of mass squared as a contribution
cancelling the net conformal weight.

The explicit formulas for generators of local Super algebras can be guesses
by from those for ordinary conformal algebras. In the defining representation
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the infinitesimal generators of loop group can be written as

TAn (z) = TAzn , (75)

where TA satisfy the usual Lie algebra commutation relations. Obviously satisfy
the commutation relations of Kac-Moody algebra without central extension.
The quantal variant of the Kac Moody algebra is obtained via the expansion

TA(z) =
∑
n

TAn z
n ,

(TAn )† = T a−n , (76)

where TAn satisfy the commutation relations of Kac-Moody algebra with central
extension.

In the recent case zn would be replaced with mN where m is representation
of M4 coordinate as hyper-quaternion which can be represented as 2×2 matrix.
The hyper-quaternions m1 and m2 do not commute unless they belong to same
hyper-complex plane M2 defining the Minkowskian variant of complex plane.
Thus if m1 and m2 they are on the same hyper-complex line (m1 = λm2)
this is the case. Complex conjugation for m can be defined as a change of
sign for the imaginary part of hyper-quaternion. The commutation and anti-
commutation relations for M4 local variants of super-conformal algebras can be
fixed by considering them at hyper-complex planes of M4.

4.6.1 Hyper-quaternionic variant of super-conformal algebras

Concerning the definition of the hyper-quaternionic variants of super-conformal
algebras two options can be considered.

Option I: One could allow only the generators XA,n
N with N = n so that

the resulting super conformal algebra restricted to the hyper-quaternionic plane
could be seen as a dual for the original algebra at partonic 2-surface obtained
by replacing powers of z with powers of m. N = n condition is very attractive
since N as a conformal weight in M4 naturally corresponds to the mass squared
eigen value. In super string models mass squared would give a contribution
to conformal weight compensating the contributions possible also in Euclidian
conformal field theories. Now the duality between the two algebras would give
the mass formula.

Option II: One could try to genuinely localize the super-conformal algebra.
This would bring in an infinite number of new degrees of freedom. Even the
unit matrix Id belonging to the super-conformal algebra should be localized to
give a family IdN of unit operators. In principle new kind of central extensions
would become possible and would be completely independent of the original
one. This approach does not seem to be promising and does not conform with
the physical intuitions. Hence only the first option will be considered.
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Since Gamma matrices carry fermion number in TGD framework, one must
assume that N → −N transformation involves fermionic charge conjugation so
that N corresponds to say creation operator for fermion and −N to annihilation
operator for antifermion. Therefore one has doubling of the fermionic algebra
giving generators ΓA,N and ΓcA,N . The crucial deviation from string models
emerges where hermiticity conditions for Γ field lead to Majorana spinors and
critical dimension D = 10. This leads to non-hermiticity and doubling of also
Super-Virasoro generators GN . This doubling seems to be completely analogous
to that occurring in N = 2 super-symmetric theories.

The non-vanishing commutators and anti-commutators are

[
TAM (λm), TBN (m)

]
= λMfABC TCM+Nm

M+N + kδM+NδA,B ,

{ΓA,M (λm),ΓcB,N (m)} = λMGAB(N)δM+N . (77)

Here GAB denotes configuration space metric for CHm.
The local super Kac-Moody field are

TA(m) =
∑
n

TANm
N ,

ΓA(m) =
∑
n

ΓANm
N , .

Commutations and anticommutators along the hyper-complex planes m1/m2 =
λ can be calculated. One can always make the choice |λ| < 1. The central
extension term in Kac-Moody algebra commutation relations and the fermionic
anti-commutator read as

[
TA(λm), TB(m)

]
c

= kδA,B
1

1− λ
,

{ΓA(λm),ΓB(m)} =
∑
M

GA,B(M)λM . (78)

At the limit λ→ 1 the commutator and anti-commutator diverge. Exactly the
same behavior results in the ordinary conformal field theory. The functional
form of the commutators in hyper-complex algebra is identical to that obtained
in the complex case which suggests that everything from conformal theories in
plane generalizes more or less trivially to the recent situation by replacing z
with m in some hyper-complex subspace and possibly algebraically continuing
to the other values of m.

4.6.2 Comparison with the Super Virasoro conditions of string mod-
els

The next question is how the resulting theory relates to the stringy conformal
invariance and the conformal invariance of Euclidian conformal theories. In
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string models the quantization of mass squared results from Virasoro conditions
L0|phys〉 = 0 and mass squared gives a compensating contribution to the con-
formal weight from degrees of freedom not present in Euclidian conformal field
theories. It is essential that all generators Ln annihilate the physical states
and this implies that the parameters labelling Super Virasoro representations
cancel: c = 0, h = 0. This is what makes the dimension of the imbedding
space so unique. In TGD framework number theoretical considerations imply
the uniqueness.

The situation is now different.

1. Partonic boundary components are Euclidian and there is no room for
four-momentum at this level. Since N appears as an exponent of the
hyper-quaternionic coordinate m highly analogous to the hyper-complex
coordinate for the stringy world sheet, the identification of the mass
squared eigenvalues as conformal weights N = n is natural and one would
have the formula

m2 = m2
0N = m2

0n . (79)

2. There is no need to pose the condition LN |phys〉 = 0 for N > 0. Neither
there is any need to assume that Super Virasoro generators LN create zero
norm states. Obviously this would be also inconsistent with mass formula.
Therefore both c and h can be non-vanishing and all non-stringy conformal
field theories can in principle be associated with partonic boundary com-
ponents. This is what one wants since these theories should be assignable
to the Jones inclusions characterizing the limitations of quantum measure-
ments.

3. Four-momentum does not appear in Super Virasoro generators. In stringy
conformal theories Ln involves four-momentum linearly. Four-momentum
appears also in super generators Gn in string model approach and forces
Majorana condition since the center of mass term for G0 in Ramond repre-
sentation is ordinary Dirac operator. In TGD framework the application of
stringy conformal invariance would lead to difficulties since G has fermion
number and one should modify ordinary Dirac operator so that it has
fermion number. The longitudinal degrees of freedom where it is not pos-
sible to complexify the gamma matrices and replace them with fermionic
oscillator operators are problematic in this respect. The disappearance of
four-momentum from Super Virasoro conditions for GN resolves this diffi-
culty trivially. Notice that in the recent approach hyper-complex plane for
purely number theoretic reasons is analogous to the breaking of manifest
Lorentz invariance implied by gauge fixing in stringy approach.

4. Ground state conformal weight h for ordinary Super Virasoro representa-
tions can be non-vanishing and even negative, this is indeed the case in
TGD framework. Also non-integer conformal weights for ground states are
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possible and in N-S representation super generators carry half-odd-integer
conformal weights. In the recent case this would require the appearance of
fractional powers of hyper quaternion m in N-S type super generators and
in the generalizations of hyper-quaternion valued correlation functions (if
they exist and have some physical meaning). The square roots appearing
in N-S generators are given by

√
m

0 = 1√
2

√
m0 ±

√
a2 , a2 = mklm

kml

(
√
m)i = mi

2
√
m0 .

Square root is well defined inside future light-cone whereas outside the
light-cone the square root forces to introduce an additional imaginary
unit. This suggests that only integer valued total conformal weights are
acceptable for physical states and correlation functions. In conformal field
theories single valuedness of the correlation functions forces the conformal
blocks to have integer conformal weights. Roots exist for all fractional
powers inside light-cone. In a matrix representation for quaternion such
that m corresponds to a 2× 2 matrix, the roots are obtained by applying
the root of the Lorentz transformation as an automorphism to the root of
mk = m0δk,0. Note that only future or past light cone at a given point
is possible since the roots of m0 appearing in correlation functions with
fractional conformal weights must be real. A stronger conclusion is that
the conformal fields are defined only inside future or past lightcone and it
turns out that this interpretation is physically plausible.

4.6.3 p-Adic thermodynamics and the new approach

The recent approach gives also a sound basis for p-adic thermodynamics.

1. Physical states possess now genuine conformal weights and mass squared
is the thermal expectation value of the conformal weight so that there are
no problems with Lorentz invariance. In stringy approach net conformal
weights of the physical states vanish and one must apply p-adic thermo-
dynamics to the four-momentum squared so that a breaking of Lorentz
invariance is unavoidable.

2. The super-conformal partition functions crucial for the p-adic mass calcu-
lations using p-adic thermodynamics for L0 are identical with the ordinary
ones if super-generators carry fermion number since this means effectively
only N = 2 super-symmetry.

3. N ≥ 0 for the conformal weights of physical states is an obvious require-
ment in the recent framework since N < 0 corresponds to field modes
which are singular at m = 0. This excludes tachyons. This condition
is of special importance in TGD framework since super-canonical genera-
tors create ground states with arbitrarily large negative conformal weights
[E2].
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5 Trying to understand N = 4 super-conformal
symmetry

I ended up with N = 4 super-conformal symmetry as being generated by the
solutions of the modified Dirac equation for the induced spinor fields. Later I
was ended up with this symmetry by considering the general structure of these
algebras interpreted in TGD framework. In the following the latter approach is
discussed in detail. Needless to say, a lot remains to be understood.

In particular, the realization of the super-conformal symmetry in the quark
sector does not seem to be possible if one assumes fractionally charged free
quarks unless one somehow modifies the motion of the super-symmetry. The
proposed replacement of covariantly constant spinor fields as generators of super-
conformal symmetries with solutions of the modified Dirac equation might re-
solve this problem. Also the breaking of N = 4 to N = 2 symmetry is suggested
by physical arguments and could be understood in this framework. In partic-
ular, N = 2 super-conformal symmetry could result in the quark sector in this
manner.

5.1 N = 4 super-conformal symmetry as a basic symmetry
of TGD

N > 0 super-conformal algebras contain besides super Virasoro generators also
other types of generators and this raises the question whether it might be possi-
ble to find an algebra coding the basic quantum numbers of the induced spinor
fields.

5.1.1 Right-handed neutrinos as source of N = 4 super-conformal
symmetry in TGD framework

N = 2 super-conformal symmetry would correspond in TGD framework to co-
variantly constant complex right handed neutrino spinors with two spin direc-
tions forming a right handed doublet and would be exact and act only in the lep-
tonic sector relating configuration space Hamiltonians and super-Hamiltonians.
This algebra extends to the so called small N = 4 algebra if one introduces the
conjugates of the right handed neutrino spinors. This symmetry is exact if only
leptonic chirality is present in theory or if free quarks carry leptonic charges.

There are several variants of N = 4 SCAs and they correspond to the Kac-
Moody algebras SU(2) (small SCA), SU(2) × SU(2) × U(1) (large SCA) and
SU(2)×U(1)4. Rasmussen has found also a fourth variant based on SU(2)×U(1)
Kac-Moody algebra [42]. It seems that only minimal and maximal N = 4 SCAs
can represent realistic options. The reduction to almost topological string theory
in critical phase is probably lost for other than minimal SCA but could result
as an appropriate limit for other variants.
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5.1.2 Small N = 4 SCA ...

Consider the TGD based interpretation of the small N = 4 SCA.

1. The group SU(2) associated with the small N = 4 SCA and acting as
rotations of covariantly constant right-handed neutrino spinors allows also
an interpretation as a group SO(3) leaving invariant the sphere S2 of
the light-cone boundary identified as rM = m0=constant surface defining
generalized Kähler and symplectic structures in δM4

±.

2. The choice of the preferred coordinate system should have a physical jus-
tification. The interpretation of SO(3) as the isotropy group of the rest
system defined by the total four-momentum assignable to the 3-surface
containing partonic 2-surfaces is supported by the quantum classical cor-
respondence. The subgroup U(1) of SU(2) acts naturally as rotations
around the axis defined by the light ray from the tip of M4

± orthogonal
to S2. For c = 0, k = 0 case these groups define local gauge symmetries.
In the more general case local gauge invariance is broken whereas global
invariance remains as it should.

In M2×E2 decomposition E2 corresponds to the tangent space of S2 at a
given point and M2 to the plane orthogonal to it. The natural assumption
is that the right handed neutrino spinor is annihilated by the momentum
space Dirac operator corresponding to the light-like momentum defining
M2 × E2 decomposition.

1. Why N = 4 super-conformal symmetry would be so nice?

What makes this so interesting is that N = 2 super-conformal invariance has
been claimed to imply the vanishing of all amplitudes with more than 3 external
legs for closed critical N = 2 strings having c = 6, k = 1 which corresponds
to n → ∞ limit and q = 1 for Jones inclusions [36, 37]. Only the partition
function and 2 ≤ N ≤ 3 scattering amplitudes would be non-vanishing. The
argument of [36] relies on the imbedding of N = 2 super-conformal field theory
to N = 4 topological string theory whereas in [37] the Ward identities for
additional unbroken symmetries associated with the chiral ring accompanying
N = 2 super-symmetry [24] are utilized. In fact, N = 4 topological string theory
allows also imbeddings of N = 1 super strings [36].

The properties of c = 6 critical theory allowing only integral valued U(1)
charges and fermion numbers would conform nicely with what we know about
the perturbative electro-weak physics of leptons and gauge bosons. c = 1, k = 1
sector with N = 2 super-conformal symmetry would involve genuinely stringy
physics since all N-point functions would be non-vanishing and the earlier hy-
pothesis that strong interactions can be identified as electro-weak interactions
which have become strong inspired by HO-H duality [E2] could find a concrete
realization.

In c = 6 phase N = 2-vertices the loop corrections coming from the presence
of higher lepton genera in amplitude could be interpreted as topological mixing
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forced by unitarity implying in turn leptonic CKM mixing for leptons. The
non-triviality of 3-point amplitudes would in turn be enough to have a stringy
description of particle number changing reactions, such as single photon brehm-
strahlung. The amplitude for the emission of more than one brehmstrahlung
photons from a given lepton would vanish. Obviously the picture would con-
form with the vision of [C7] based on the idea of generalizing braid diagrams by
allowing branching of braids. Obviously the connection with quantum field the-
ory picture would be extremely tight and imbeddability to a topological N = 4
quantum field theory could make the theory to a high degree exactly solvable.

2. Objections

There are also several reasons for why one must take the idea about the
usefulness of c = 6 super-conformal strings from the point of view of TGD with
an extreme caution.

1. Stringy diagrams have quite different interpretation in TGD framework.
The target space for these theories has dimension four and metric signature
(2,2) or (0,4) and the vanishing theorems hold only for (2, 2) signature.
In lepton sector one might regard the covariantly constant complex right-
handed neutrino spinors as generators of N = 2 real super-symmetries but
in quark sector there are no super-symmetries.

2. The spectrum looks unrealistic: all degrees of freedom are eliminated by
symmetries except single massless scalar field so that one can wonder what
is achieved by introducing the extremely heavy computational machinery
of string theories. This argument relies on the assumption that time-
like modes correspond to negative norm so that the target space reduces
effectively to a 2-dimensional Euclidian sub-space E2 so that only the vi-
brations in directions orthogonal to the string in E2 remain. The situation
changes if one assigns negative conformal weights and negative energies to
the time like excitations. In the generalized coset representation used to
construct physical states this is indeed assumed.

3. The central charge has only values c = 6k, where k is the central extension
parameter of SU(2) algebra [43] so that it seems impossible to realize the
genuinely rational values of c which should correspond to the series of
Jones inclusions. One manner to circumvent the problem would be the
reduction to N = 2 super-conformal symmetry.

4. SU(2) Kac-Moody algebra allows to introduce only 2-component spinors
naturally whereas super-quaternions allow quantum counterparts of 8-
component spinors.

5.1.3 ...or maximal N = 4 SCA?

Consider the Kac-Moody algebra SU(2)×SU(2)×U(1) associated with the max-
imal N = 4 SCA. Besides Kac-Moody currents it contains 4 spin 1/2 fermions
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having an identification as quantum counterparts of leptonic spinor fields. The
interpretation of the first SU(2) is as rotations of covariantly constant right
handed neutrino spinors and rotations leaving invariant the sphere S2 ⊂ δM4

±.
U(2) has interpretation as electro-weak gauge group and as maximal linearly
realized subgroup of SU(3). This algebra acts naturally as symmetries of the
8-component spinors representing super partners of quaternions.

The algebra involves the integer value central extension parameters k+ and
k− associated with the two SU(2) algebras as parameters. The value of U(1)
central extension parameter k is given by k = k+ + k−. The value of central
extension parameter c is given by

c = 6k−
x

1 + x
< 6k+ , x =

k+

k−
.

c can have all non-negative rational values m/n for positive values of k± given
by k+ = rm, k− = (6nr− 1)m. Unitarity might pose further restrictions on the
values of c. At the limit k− = k, k+ → ∞ the algebra reduces to the minimal
N = 4 SCA with c = 6k since the contributions from the second SU(2) and
U(1) to super Virasoro currents vanish at this limit.

5.1.4 What about N = 4 SCA with SU(2)×U(1) Kac-Moody algebra?

Rasmussen [42] has discovered an N = 4 super-conformal algebra containing
besides Virasoro generators and 4 Super-Virasoro generators SU(2)×U(1) Kac-
Moody algebra and two spin 1/2 fermions and a scalar. In TGD framework it
is difficult to interpret physically the scalar.

There are actually two versions about Rasmussen’s article [42]: in the first
version the author talks about SU(2) × U(1) Kac-Moody algebra and in the
second one about SL(2) × U(1) Kac-Moody algebra. These variants would
correspond in TGD framework to two different Jones inclusions.

1. The first inclusion is defined by G = SL(2, R) ⊂ SO(3, 1) acting on M4

part of H-spinors (or alternatively, as Lorentz group inducing motions in
the plane E2 orthogonal to a light-like ray from the origin of light-cone
M4

+). Physically the inclusion would mean that Lorentz degrees of freedom
are frozen in the physical measurement. This leaves electro-weak group
SU(2)L × U(1) as the group acting on H-spinors.

2. The second inclusion is defined by the electro-weak group SU(2)L so that
Kac-Moody algebra SL(2, R)× U(1) remains dynamical.

5.2 The interpretation of the critical dimension D = 4 and
the objection related to the signature of the space-
time metric

The first task is to show that D = 4 (D = 8) as critical dimension of target space
for N = 2 (N = 4) super-conformal symmetry makes sense in TGD framework
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and that the signature (2,2) ((4, 4) of the metric of the target space is not a
fatal flaw.

5.2.1 Space-time as a target space for partonic string world sheets?

Since partonic 2-surfaces are sub-manifolds of 4-D space-time surface, it would
be natural to interpret space-time surface as the target space for N = 2 super-
conformal string theory so that space-time dimension would find a natural ex-
planation. Different Bohr orbit like solutions of the classical field equations
could be the TGD counterpart for the dynamic target space metric of M-theory.
Since partonic two-surfaces belong to 3-surface X3

V , the correlations caused by
the vacuum functional would imply non-trivial scattering amplitudes with CP2

type extremals as pieces of X3
V providing the correlate for virtual particles.

Hence the theory could be physically realistic in TGD framework and would
conform with perturbative character for the interactions of leptons. N = 2
super-conformal theory would of course not describe everything. This algebra
seems to be still too small and the question remains how the functional integral
over the configuration space degrees of freedom is carried out. It will be found
that N = 4 super-conformal algebra results neatly when super Kac-Moody and
super-canonical degrees of freedom are combined.

5.2.2 The interpretation of the critical signature

The basic problem with this interpretation is that the signature of the induced
metric cannot be (2,2) which is essential for obtaining the cancellation for N = 2
SCA imbedded to N = 4 SCA with critical dimension D = 8 and signature (4,4).
When super-generators carry fermion number and do not reduce to ordinary
gamma matrices for vanishing conformal weights, there is no need to pose the
condition of the metric signature. The (4,4) signature of the target space metric
is not so serious limitation as it looks if one is ready to consider the target space
appearing in the calculation of N-point functions as a fictive notion.

The resolution of the problems relies on two observations.

1. The super Kac-Moody and super-canonical Cartan algebras have dimen-
sion D = 2 in both M4 and CP2 degrees of freedom giving total effective
dimension D = 8.

2. The generalized coset construction to be discussed in the sequel allows to
assign opposite signatures of metric to super Kac-Moody Cartan algebra
and corresponding super-canonical Cartan algebra so that the desired sig-
nature (4,4) results. Altogether one has 8-D effective target space with
signature (4,4) characterizing N = 4 super-conformal topological strings.
Hence the number of physical degrees of freedom is Dphys = 8 as in super-
string theory. Including the non-physical M2 degrees of freedom, one has
critical dimension D = 10. If also the radial degree of freedom associated
with δM4

± is taken into account, one obtains D = 11 as in M-theory.
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5.3 About the interpretation of N = 2 SCA and small
N = 4 SCA

The N = 2 super-conformal algebra automatically extends to the so called
small N = 4 algebra with four super-generators G± and their conjugates [36].
In TGD framework G± degeneracy corresponds to the two spin directions of the
covariantly constant right handed neutrinos and the conjugate of G± is obtained
by charge conjugation of right handed neutrino. From these generators one can
build up a right-handed SU(2) algebra.

Hence the SU(2) Kac-Moody of the small N = 4 algebra corresponds to
the three imaginary quaternionic units and the U(1) of N = 2 algebra to ordi-
nary imaginary unit. Energy momentum tensor T and SU(2) generators would
correspond to quaternionic units. G± to their super counterparts and their
conjugates would define their ”square roots”.

5.3.1 The connection between super-conformal algebras and classi-
cal division algebras

There are well-known connections with classical number fields and super-conformal
algebras.

1. There exists two proposals for a simple super-affinization of the octonionic
algebra realized in terms of spin 1/2 super fields obeying expected octo-
nionic anticommutation relations in the fermionic sector. Otherwise the
fields behave like like octonionic units. These constructions are discussed
in [38, 39].

2. It is known that only N ≤ 4 super-conformal algebras allow Sugawara
construction [38]. For N = 8 super-affine octonionic algebra the Sugawara
construction does not give a closed algebraic structure except at the limit
k → ∞ for the Kac-Moody central charge [39]: this algebra is the non-
associative SCA discovered first by Englert et al [40]. This limit could
be interpreted in terms of a critical conformal field theory. The minimal
super-affine quaternionic sub-algebra reduces to a small N = 4 SCA and
allows Sugawara construction [38]. This limit would correspond to n→∞
limit for the Jones inclusion and critical value of c corresponding to the
almost-topologization of N = 2 n-point functions. The problem is that the
representations do not exist for finite values of k which are also needed.

The number theoretical vision supports the view that only quaternionic
SCA can be used in the construction of physical states. A stronger conclu-
sion would be that only the quaternionic SCA is possible so that quarks
would be fractionally charged leptons in k = 1 phase. The topologication
of N = 4 n-point functions in the critical phase could be consistent with
the possibility to describe electro-weak interactions perturbatively since
partonic 2-surfaces would still interact classically and these interactions
would correspond to exchanges of virtual particles represented by CP2

type extremals.

108



5.3.2 Small N = 4 SCA as sub-algebra of N = 8 SCA in TGD frame-
work?

A possible interpretation of the small N = 4 super-conformal algebra would
be quaternionic sub-SCA of the non-associative octonionic SCA. The N = 4
algebra associated with a fixed fermionic chirality would represent the fermionic
counterpart for the restriction to the hyper-quaternionic submanifold of HO and
N = 2 algebra in the further restriction to commutative sub-manifold of HO so
that this algebra would naturally appear at the parton level. Super-affine version
of the quaternion algebra can be constructed straightforwardly as a special case
of corresponding octonionic algebra [39]. The construction implies 4 fermion
spin doublets corresponding and unit quaternion naturally corresponds to right
handed neutrino spin doublet. The interpretation is as leptonic spinor fields
appearing in Sugawara representation of Super Virasoro algebra.

A possible octonionic generalization of Super Virasoro algebra would involve
4 doublets G

i)
±, i = 1, ..., 4 of super-generators and their conjugates having

interpretation as SO(8) spinor and its its conjugate. Gi)± and their conjugates

G
i)

± would anti-commute to SO(8) vector octet having an interpretation as a
super-affine algebra defined by the octonionic units: this would conform nicely
with SO(8) triality.

One could say that the energy momentum tensor T extends to an octo-
nionic energy momentum tensor T as real component and affine generators as
imaginary components: the real part would have conformal weight h = 2 and
imaginary parts conformal weight h = 1 in the proposed constructions reflecting
the special role of real numbers. The ordinary gamma matrices appearing in the
expression of G in Sugawara construction should be represented by units of com-
plexified octonions to achieve non-associativity. This construction would differ
from that of [39] in that G fields would define an SO(8) octet in the proposed
construction: HO-H duality would however suggest that these constructions are
equivalent.

One can consider two possible interpretations for Gi)± and corresponding
analogs of super Kac-Moody generators in TGD framework.

1. Leptonic right handed neutrino spinors correspond toGi)± generating quater-
nionic units and quark like left-handed neutrino spinors with leptonic
charges to the remaining non-associative octonionic units. The interpre-
tation in terms of so called mirror symmetry would be natural. What is
is clear the direct sum of N = 4 SCAs corresponding to the Kac-Moody
group SU(2)×SU(2) would be exact symmetry if free quarks and leptons
carry integer charges. One might however hope of getting also N = 8
super-conformal algebra. The problem with this interpretation is that
SO(8) transformations would in general mix states with different fermion
numbers. The only way out would be the allowance of mixtures of right-
handed neutrinos of both chiralities and also of their conjugates which
looks an ugly option.
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In any case, the well-definedness of the fermion number would require
the restriction to N = 4 algebra. Obviously this restriction would be
a super-symmetric version for the restriction to 4-D quaternionic- or co-
quaternionic sub-manifold of H.

2. One can ask whether Gi)± and their conjugates could be interpreted as
components of leptonic H-spinor field. This would give 4 doublets plus
their conjugates and mean N = 16 super-symmetry by generalizing the
interpretation of N = 4 super-symmetry. In this case fermion number
conservation would not forbid the realization of SO(8) rotations. Super-
conformal variant of complexified octonionic algebra obtained by adding
a commuting imaginary unit would result. This option cannot be ex-
cluded since in TGD framework complexified octonions and quaternions
play a key role. The fact that only right handed neutrinos generate asso-
ciative super-symmetries would mean that the remaining components Gi)±
and their conjugates could be used to construct physical states. N = 8
super-symmetry would thus break down to small N = 4 symmetry for
purely number theoretic reasons and the geometry of CP2 would reflect
this breaking.

The objection is that the remaining fermion doublets do not allow co-
variantly constant modes at the level of imbedding space. They could
however allow these modes as induced H-spinors in some special cases
which is however not enough and this option can be considered only if
one accepts breaking of the super-conformal symmetry from beginning.
The conclusion is that the N = 8 or even N = 16 algebra might appear
as a spectrum generating algebra allowing elegant coding of the primary
fermionic fields of the theory.

5.4 Large N = 4 SCA is the natural option

The arguments below support the view that ”large” N = 4 SCA is the natural
algebra in TGD framework.

5.4.1 How N = 4 super-conformal invariance emerges from the par-
ton level formulation of quantum TGD?

The discovery of the formulation of TGD as a N = 4 almost topological super-
conformal QFT with light-like partonic 3-surfaces identified as basic dynamical
objects led to the final understanding of super-conformal symmetries and their
breaking. N = 4 super-conformal algebra corresponds to the maximal algebra
with SU(2)× U(2) Kac-Moody algebra as inherent fermionic Kac-Moody alge-
bra. Concerning the interpretation the first guess would be that SU(2)+ and
SU(2)− correspond to vectorial spinor rotations in M4 and CP2 and U(1) to
Kähler charge. A more educated guess is that SU(2)+ and SU(2)− correspond
to right and left handed spinorial rotations in M4 and U(1) to electromagnetic
charge.
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5.4.2 Large N = 4 SCA algebra

Large N = 4 super-conformal symmetry with SU(2)+ × SU(2)− × U(1) in-
herent Kac-Moody symmetry seems to define the fundamental partonic super-
conformal symmetry in TGD framework.

A concise discussion of this symmetry with explicit expressions of commu-
tation and anticommutation relations can be found in [42]. The representations
of SCA are characterized by three central extension parameters for Kac-Moody
algebras but only two of them are independent and given by

k± ≡ k(SU(2)±) ,

k1 ≡ k(U(1)) = k+ + k− . (80)

The central extension parameter c is given as

c =
6k+k−
k+ + k−

. (81)

and is rational valued as required.
A much studied N = 4 SCA corresponds to the special case

k− = 1 , k+ = k + 1 , k1 = k + 2 ,

c =
6(k + 1)
k + 2

. (82)

c = 0 would correspond to k+ = 0, k− = 1, k1 = 1. For k+ > 0 one has
k1 = k+ + k− 6= k+.

5.4.3 About unitary representations of large N = 4 SCA

The unitary representations of large N = 4 SCA are briefly discussed in [46].
The representations are labelled by the ground state conformal weigh h, SU(2)
spins l+, l−, and U(1) charge u. Besides the inherent Kac-Moody algebra there
is also ”external” Kac-Moody group G involved and corresponds in TGD frame-
work to the canonical algebra associated with δH± = δM4

± × CP2.
Unitarity constraints apply completely generally irrespective of G so that

one can apply them also in TGD framework. There are two kinds of unitary
representations.

1. Generic/long/massive representations which are ge generated from vac-
uum state as usual. In this case there are no null vectors.

2. Short or massless representations have a null vector. The expression for
the conformal weigt hshort of the null vector reads in terms of l+, l− and
k+, k− as
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hshort =
1

k+ + k−
(k−l+ + k+l− + (l+ − l−)2 + u2) . (83)

Unitarity demands that both short and long representations lie at or above
h ≥ hshort and that spins lie in the range l± = 0, 1/2, ..., (k± − 1)/2.

Interesting examples of N = 4 SCA are provided by WZW coset mod-
els W × U(1), where W is WZW model associated wto a quaternionic
(Wolf) space. Examples based on classical groups are W = G/H =
SU(n)/SU(n−1)×U(1), SO(n)/SO(n−4)×SU(2), and Sp(2n)/Sp(2n−
2). For n = 3 first series gives CP2 whereas second series gives for n = 4
SO(4)/SU(2) = SU(2). In this case one has k+ = κ + 1, and k− = ĉG,
where κ is the level of the bosonic current algebra for G and ĉG is its dual
Coxeter number.

5.4.4 What is the interpretation of SO(4)×U(1) in TGD framework?

A priori there are several options concerning the identification of the group
SO(4)× U(1) inherent to the N = 4 SCA the representation.

1. The requirement that hshort does not depend on spin and M4 chirality of
the fermion allows three alternatives. SU(2)+ and SU(2)− corresponds
to right and left handed spinor rotations in 1) M4 or 2) CP2 or 3) to
vectorial rotations in M4 and CP2. The fact the rotations of right handed
covariantly constant neutrino define a remnant of super-conformal sym-
metry, exclude option 2). U(1) would most naturally correspond to em
charge or Kähler charge. Kähler charge is the only possible identification
for options 2) and 3).

2. p-Adic mass calculations suggest that the value of hmin ≥ hshort depends
on em charge states of fermion. The naive guess would be that one has
h = hmin and that u should be proportional to electromagnetic charge.
Since U(1)em must commute with SO(4), this would leave only the option
1). It however turns out that this idea does not work and that p-adic mass
calculations allow to identify h as the conformal weight associated with
the color partial wave in the cm degrees of freedom of partonic 2-surface
indeed correlating with the electro-weak quantum numbers of the state.
This means that in principle any of the alternative internally consistent
scenarios is consistent with p-adic mass calculations.

3. In TGD framework the partonic states constructed using second quantized
imbedding space spinor fields should define fundamental representations
of N = 4 SCA. They define (l+, l−) = (1/2, 1/2) representation for op-
tion 3) and (l+, l−) = (1/2, 0) and (l+, l−) = (0, 1/2) representations for
options 1) and 2). Singlet would correspond to unit operator to which
Hamiltonians of Can are proportional. For options 1) and 2) the represen-
tation (1/2,1/2) must be constructed as fermion antifermion states and
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this would force (k+, k−) = (3, 3) implying also Higgs and gauge bosons.
For option 3) it is not clear how to obtain representations (0, 1/2) and
(1/2, 0). This argument would disfavor, if note even exclude, option 3).

4. The general vision about the quantization of Planck constants raises the
question how k+ and k− relate to the integers na and nb characterizing
the values of M4

± and CP2 Planck constants. The formulas na = k+ + 2
and nb = k− + 2 would look natural for option 3).

For option 1) the correspondence between na and nb and central extension
parameters could be following. Parity symmetry favors the identification
k+ = k− = k (predicting c = 3k). Later additional arguments suggesting
this symmetry are developed. If this symmetry holds true generally, na =
k + 2 would be the natural identification. For option 1) the Kac-Moody
algebra associated with electro-weak spinor rotations and E2 translations
and rotations andX2 localized super-canonical algebra have interpretation
as external Kac-Moody algebra and the ”external” Kac-Moody algebra
associated with CP2 spinor rotations would in turn correspond to nb =
k(SU(2)L) + 2.

5. The conclusion is that options 1) and 2) look the most plausible ones.
The lack of constraints from p-Adic mass calculations however allow to
consider also the possibility that different internally consistent choices of
SO(4)×U(1) algebra are actually equivalent mathematically so that there
would be additional symmetry involved.

5.4.5 Consistency with p-adic mass calculations

The consistency with p-adic mass calculations provides a strong guide line in
attempts to interpret N = 4 SCA. The basis ideas of p-adic mass calculations
are following.

1. Fermionic partons move in color partial waves in their cm degrees of free-
dom. This gives to conformal weight a vacuum contribution equal to the
CP2 contribution to mass squared. The contribution depends on electro-
weak isospin and equals hc(U) = 2 and hc(D) = 3 for quarks and one has
hc(ν) = 1 and hc(L) = 2.

2. The ground state can correspond also to non-negative value of L0 for
SKMV algebra which gives rise to a thermal degeneracy of massless states.
p-Adic mass calculations require (hgr(D), hgr(U)) = (0,−1, ) and (hgr(L), hgr(ν)) =
(−1,−2) so that the super-canonical operator Oc screening the anomalous
color charge has conformal weight hc = −3 for all fermions.

The simplest interpretation is that the free parameter h appearing in the
representations of the SCA corresponds to the conformal weight due to the
color partial wave so that the correlation with electromagnetic charge would
indeed emerge but from the correlation of color partial waves and electro-weak
quantum numbers.
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The requirement that ground states are null states with respect to the SCV
associated with the radial light-like coordinate of δM4

± gives an additional con-
sistency condition and hc = −3 should satisfy this condition. p-Adic mass
calculations do not pose non-trivial conditions on h for option 1) if one makes
the identification u = Qem since one has hshort < 1 for all values of k+ + k−.
Therefore both options 1) and 2) can be considered.

5.4.6 How the canonical algebra is integrated into this scheme?

The canonical algebra of δH± takes the role as ”external” Lie algebra G in
TGD framework. Indeed the localization of super-canonical algebra with re-
spect to X2 gives the counterpart of super Kac-Moody algebra associated with
G. Therefore the condition that the commutator of SKM and SC algebras anni-
hilates physical states posed in the state construction generalizes the condition
that n > 0 generators of SKM(G) annihilate the physical states.

1. For option 3) a good guess is that the CP2) × U(1) coset representing
SU(3) and electro-weak algebra as a gauge algebra extends to the canon-
ical algebra and brings in the electro-weak spinor rotations. The U(1)
factor could correspond to Kähler charge.

2. Since the canonical transformations of CP2 and δM4
± containing SO(3)

and SU(3) as subgroups integrate to a larger group, the symplectic exten-
sion parameter k must be equal to Kac-Moody central extension parameter
k(SU(3)) = k(SO(3)) which in turn is expected to be equal to k− if coset
representation generalizes.

3. Since only SU(3) is represented as non-trivial holonomies (as U(2)ew ro-
tations) of induced spinor fields, one could argue that bosonic SO(3) gen-
erators can be joined to inherent Kac-Moody algebra and extended to
canonical algebra. Furthermore, the dual Coxeter number of SU(3) would
dictate the value of k− as k− = ĉSU(3) = 3. The value of central extension
parameter would be c = 9. This interpretation would give l− = 1 as max-
imum value of fermionic contribution to the bosonic spin. Electro-weak
gauge bosons and Higgs scalar would be included to the fundamental par-
tonic representation. Graviton could correspond to a state for which one
one unit of spin originates from SO(3) and one unit from spinorial degrees
of freedom as suggested earlier. This might relate closely to the weakness
of the gravitational interaction.

5.4.7 About breaking of large N = 4 SCA

Partonic formulation predicts that large N = 4 SCA is a broken symmetry, and
the first guess is that breaking occurs via several steps. First a ”small” N = 4
SCA with Kac-Moody group SU(2)+×U(1) would result. The next step would
lead to N = 2 SCA and the final step to N = 0 SCA. Several symmetry breaking
scenarios are possible.
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1. The interpretation of SU(2)+ in terms of right handed spin rotations and
U(1) as electromagnetic gauge group conforms with the general vision
about electro-weak symmetry breaking in non-stringy phase. The inter-
pretation certainly makes sense for covariantly constant right handed neu-
trinos for which spin direction is free. For left handed charged electro-weak
bosons the action of right-handed spinor rotations is trivial so that the in-
terpretation would make sense also now.

2. The next step in the symmetry breaking sequence would be N = 2 SCA
with electromagnetic Kac-Moody algebra as inherent Kac-Moody algebra.

5.4.8 Consistency with critical dimension of super-string models and
M-theory

Mass squared is identified as the conformal weight of the positive energy compo-
nent of the state rather than as a contribution to the conformal weight cancelling
the total conformal weight. Also the Lorentz invariance of the p-adic thermody-
namics requires this. As a consequence, the pseudo 4-momentum p assignable
to M4 super Kac-Moody algebra could be always light-like or even tachyonic.

Super-canonical algebra would generate the negative conformal weight of
the ground state required by the p-adic mass calculations and super-Kac Moody
algebra would generate the non-negative net conformal weight identified as mass
squared. In this interpretation SKM and SC degrees of freedom are independent
and correspond to opposite signs for conformal weights.

The construction is consistent with p-adic mass calculations [F2, F3] and
the critical dimension of super-string models.

1. Five Super Virasoro sectors are predicted as required by the p-adic mass
calculations (the predicted mass spectrum depends only on the number
of tensor factors). Super-canonical algebra gives Can(CP2) and Can(S2).
In SKM sector one has SU(2)L, U(1), local SU(3), SO(2) and E2 so that
5 sectors indeed result.

2. The Cartan algebras involved of SC is 2-dimensional and that of SKM is
7-dimensional so that 10-dimensional Cartan algebra results. This means
that vertex operator construction implies generation of 10-dimensional tar-
get space which in super-string framework would be identified as imbed-
ding space. Note however that these dimensions have Euclidian signa-
ture unlike in superstring models. SKM algebra allows also the option
SO(3) × E(3) in M4 degrees of freedom: this would mean that SKM
Cartan algebra is 10-dimensional and the whole algebra 11-dimensional.

5.4.9 N = 4 super-conformal symmetry and WZW models

One can question the naive idea that the basic structure Gint = SU(2)× U(2)
structure of N = 4 SCA generalizes as such to the recent framework.
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1. N = 4 SCA is originally associated with Majorana spinors. N = 4 alge-
bra can be transformed from a real form to complex form with 2 complex
fermions and their conjugates corresponding to complex H-spinors of def-
inite chirality having spin and weak isospin. At least at formal level the
complexification of N = 4 SCA algebra seems to make sense and might be
interpreted as a direct sum of two N = 4 SCAs and complexified quater-
nions. Central charge would remain c = 6k+k−/(k+ + k−) if naive com-
plexification works. The fact that Kac-Moody algebra of spinor rotations
is Gint = SO(4)×SO(4)×U(1) is naturally assignable naturally to spinors
of H suggests that it represents a natural generalization of SO(4)× U(1)
algebra to inherent Kac-Moody algebra.

2. One might wonder whether the complex form of N = 4 algebra could
result from N = 8 SCA by posing the associativity condition.

3. The article of Gunaydin [41] about the representations of N = 4 super-
conformal algebras realized in terms of Goddard-Kent-Olive construction
and using gauged Wess-Zumino-Witten models forces however to ques-
tion the straightforward translation of results about N = 4 SCA to TGD
framework and it must be admitted that the situation is something con-
fusing. Of course, there is no deep reason to believe that WZW models
are appropriate in TGD framework.

i) Gauged WZW models are constructed using super-space formalism
which is not natural in TGD framework. The coset space CP2 × U(2)
where U(2), could be identified as sub-algebra of color algebra or possibly
as electro-weak algebra provides one such realization. Also the complexi-
fixation of the N = 4 algebra is something new.

ii) The representation involves 5-grading by the values of color isospin for
SU(3) and makes sense as a coset space realization for G/H × U(1) if
H is chosen in such a manner that G/H × SU(2) is quaternionic space.
For SU(3) one has H = U(1) identifiable in terms of color hyper charge
CP2 is indeed quaternionic space. For SU(2) 5-grading degenerates since
spin 1/2 Lie-algebra generators are absent and H is trivial group. In M4

degrees of gauged WZW model would be trivial.

iii) N = 4 SCA results as an extension of N = 2 SCA using so called
Freudenthal triple system. N = 2 SCA has realization in terms of G/H ×
U(1) gauged WZW theory whereas the extension to N = 4 SCA gives
G×U(1)/H gauged WZW model: note that SU(3)×U(1)/H does not have
an obvious interpretation in TGD framework. The Kac-Moody central
extension parameters satisfy the constraint k+ = k + 1 and k− = ĝ − 1,
where k is the central extension parameter for G. For G = SU(3) one
obtains k− = 1 and c = 6(k + 1)/(k + 2). H = U(1) corresponding
to color hyper-charge and U(1) for N = 2 algebra corresponds to color
isospin. The group U(1) appearing in SU(3)×U(1) might be interpreted
in terms of fermion number or Kähler charge.
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iv) What looks somewhat puzzling is that the generators of second SU(2)
algebra carry fermion number F = 4I3. Note however that the sigma ma-
trices of configuration space with fermion number ±2 are non-vanishing
since corresponding gamma matrices anti-commute. Second strange fea-
ture is that fermionic generators correspond to 3+3 super-coordinates of
the flag-manifold SU(3)/U(1)×U(1) plus 2 fermions and their conjugates.
Perhaps the coset realization in CP2 degrees of freedom is not appropriate
in TGD framework and that one should work directly with the realization
based on second quantized induced spinor fields.

5.5 Are both quark and lepton like chiralities needed/possible?

Before the formulation of quantum TGD based on the identification of light-like
3-surfaces as a representation of parton orbits emerged, one had to consider two
different physical realizations of N = 4 super-conformal symmetry. The original
option for which leptons and quarks correspond to different H-chiralities of the
induced spinor field is consistent with the partonic picture and definitely favored
so that this subsection can be regarded as as interesting side track.

On the other hand, only lepton like chiralities are needed if one can accepts
a possible instability of proton. This option is mathematically the minimal but
it is not at all clear whether the SU(3) associated with A2 characterizing Jones
inclusion can correspond to color SU(3). One can go further and ask whether
it is even possible to have both chiralities.

5.5.1 Option I: N = 4 SCA and fractionally charged quarks

Quarks generate super affinization of quaternions, which involves in no manner
the Kähler charge of quarks but for fractional quark charges only SCA in the
leptonic sector is possible since covariant constancy fails. At the fundamental
level one the spectrum generating algebra for quarks would thus emerge and
they could appear as primary fields of N = 4 conformal field theory. Config-
uration space gamma matrices could be uniquely constructed in terms of the
leptonic oscillator operators since they could correspond to super-generators of
super-Kac Moody algebra. Furthermore, if the solutions of the modified Dirac
equation generate super-conformal symmetries, it might be possible to have
super-conformal symmetry acting also in the quark sector.

A possible manner to understand quarks is as a phase with N = 2 super-
conformal symmetry with U(1) Kac-Moody algebra. Using just the requirement
that the charges in the k = 1, c = 1 phase for N = 2 super-conformal symmetry
are proportional to factor 1/3, one can conclude that this phase can contain
ordinary quarks and fractionally charged leptons whose charge results from the
phase factors depending on the sheet of the 3-fold covering of CP2. Also phases
with n > 3 are possible and require fractionization of both quark and lepton
charges. For quarks the condition n mod 3 = 0 must be satisfied in this case.
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5.5.2 Option II: N = 4 super-conformal algebra and quarks as frac-
tionally charged leptons

For the simplest option realizing N = 4 SCA only leptons are fundamental par-
ticles and quarks would be leptons in the anyonic k = 1, c = 1, n = 3 phase
of the theory. This option would resolve elegantly the problem whether one
should construct configuration space gamma matrices using leptonic or quark
like gamma matrices. Fermion number fractionization might in principle al-
low the decay of proton to positron plus pion as in GUTs. This decay might
be however excluded for purely mathematical reasons. Indeed, the worlds cor-
responding to different value of q = exp(iπ/n) could communicate only via
exchanges of bosons having a vanishing fermion number.

In the interactions between leptons and quarks the gauge bosons would pen-
etrate to the space-time sheets corresponding to the hadrons. In k = 1 phase
weak interactions would become strong since arbitrarily high parton vertices
would become possible and strong interactions could be simply electro-weak
interactions which have become strong in the anyonic phases as HO-H duality
strongly suggests [E2]. By the same duality strong interactions wold have dual
descriptions as non-perturbative electro-weak interactions and as color interac-
tions.

There are objections against this picture.

1. p-Adic mass calculations rely strongly on the fact that free quarks have
fractional charges and move in CP2 partial waves and it would be pity to
lose the nice results of these calculations.

2. This option requires that the SU(3) associated with A2 characterizing n =
3 Jones inclusion produces states equivalent with triality 1 partial waves
for quarks in order to reproduce the results of p-adic mass calculations.
This does not seem to be the case although one can understand how
effective triality 1 states results by considering 3-fold coverings of CP2

points by M4 points defined by the space-time surfaces in question. The
essential point is that 2π rotation in CP2 phase angle leads to a different
M4 point than original and 6π rotation brings back to the original point.
This might not be however enough.

5.5.3 Option III: Integer charged leptons and quarks

For the third option N = 4 superconformal symmetry can be realized in both
lepton and quark sector but by the previous arguments N = 8 SCA is not possi-
ble. Both imbedding space chiralities would possess leptonic quantum numbers
and would be allowed as fundamental fermions. At the level of configuration
space the choice of either chirality to realize the configuration space gamma
matrices would correspond to the selection of quark or lepton like chirality.
This presumably leads to problems with continuity unless the two chiralities
correspond to completely disjoint parts of the configuration space.
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Finding an explanation for the experimental absence of the free integer
charged quarks is the basic challenge met by the advocate of integer charged free
quarks. A possible explanation could rely on the fact that also gauge bosons
would be doubled. There are two options.

1. The two kinds of gauge bosons couple to only single H-chirality. One can
indeed argue that if one allows at given space-time sheet only quark or
lepton like chirality then it is not possible to have quantum superpositions
of fermion-antifermion pairs of opposite chiralities at a given space-time
sheet so that bosons would couple to either quark or lepton like chirality.
This would mean that leptons and free quarks would have no electro-
weak interactions. Even gravitational interaction would be absent. This
would however imply that ordinary hadrons should consist of fractionally
charged leptons so that second chirality would not appear at all in known
or experimentally testable physics.

2. An option allowing ordinary hadrons to consist of genuine quarks is that
the couplings of these two bosons are vectorial and axial with respect
to H-chirality (the simplest option) and left-right permutation occurs for
electro-weak couplings. This would induce a breaking of the chiral sym-
metry at the level of H just as the ordinary weak interactions do at the
level of M4 and the masses of integer charged quarks could differ from
those of genuine leptons.

If H-vectorial and H-axial gauge bosons have same coupling strengths and
masses, the diagrams representing exchanges of vectorial and axial gauge bosons
would interfere to zero so that free leptons and quarks would not see each other
at all. This should be true in (c = 6, n =∞) phase. This could be the case for
even gravitons. On the other hand, the interactions between free quarks and
hadronic quarks would be possible and would make free quarks visible so that
this option seems to produce more problems than to solve them.

In (c = 1, k = 1, n = 3) phase leptons and quarks should interact and this
is achieved if the masses and couplings of H-vectorial or H-axial electro-weak
bosons are different in this phase. It is far from clear whether this picture can
be consistent with what is known about lepton-hadron interactions.

5.5.4 Common features of the options I and II

Consider now the common features of options I and II which on basis of the
previous arguments look the only realistic ones.

1. For both options only c = 6 would correspond to the integer charged
world and hadrons would be represented by primary fields in this phase.
Hadrons would correspond to k = 1, c = 1 representation for the reduced
N = 2 conformal symmetry. Elementary fermions inside hadrons would
correspond to the lowest n = 3 Jones inclusion having k = 1 which indeed
corresponds to A2 Dynkin diagram and thus SU(3). Ordinary leptons
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and quarks (whether fractionally charged leptons or not) would thus live
in different CP2:s (recall that the generalized imbedding space has fan
like structure with different M4 × CP2:s meeting along M4). This would
explain the impossibility to observe free fractionally charged quarks.

Anyonic color triplet leptons and fractionally charged quarks would live
at the three branches of the covering of CP2. The observation that lep-
tonic spinors possess anomalous color hyper-charge identifiable as lepton
number and that this charge corresponds to weak hyper-charge explains
why the electromagnetic charge of lepton can be fractionized but not its
weak isospin.

2. An infinite hierarchy of states with fractionally charged fermions would be
predicted with charges of form m/n appearing as dark matter so that the
counterparts of quarks would represent only the simplest Jones inclusion.
For quarks one would have n = k + 2 mod 3 = 0. The invisibility of
free fractionally charged fermions would be equivalent with the invisibil-
ity of dark matter with scaled up value of CP2 Planck constant in both
options. For option I the phase transition transforming leptons to quarks
and vice versa would require three leptons per quark in order to achieve
conservation of fermion number.

3. I have already proposed the idea that antimatter is dark matter [D7] and
the obvious possibility is that matter-antimatter asymmetry corresponds
to the transformation of n anti-leptons to baryon like entities consisting of
n fractionally charged leptons inside which they behave like dark matter.
For option II anti-leptons would correspond to baryons and antimatter
would be directly observable. The notion of N-atom in TGD based model
for quantum biology is based on the same idea: in this case n = 211

electrons would form a similar structure [M3].

5.5.5 Lepton-hadron interactions for various options

The interactions between leptons and quarks and their fractionally charged
counterparts can be also understood. The following arguments favor option
I and II over option III.

1. Quite generally, the CP2 type extremal representing virtual electroweak
boson must tunnel between two CP2:s in the fan formed by M4 × CP2:s
glued together along M4 and in this process transform to hadronic weak
boson. This means that also strong interactions between leptons and
hadrons are generated but these interactions could be seen as secondary
strong interactions occurring inside hadron in any case via the decay of
photon to quark pair in turn interacting strongly with other partons.

The coupling constant characterizing the tunnelling must be such that
correct results for electro-weak interactions between quarks and leptons
are obtained in the lowest order. The notion of vector meson dominance
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meaning that weak bosons transform to strongly interacting mesons with
same electro-weak quantum numbers conforms with this picture.

2. For option II the lowest order contributions to electro-weak interactions
inside hadrons could be identified as direct lepton-quark interaction and
there are no obvious problems involved.

3. For option I gauge bosons must couple to both chiralities in order to make
possible the interaction between leptons and quarks. This is possible and
the prediction is that gauge bosons should appear as H-vectorial and H-
axial variants or their mixtures. A doubling of ordinary vector bosons is
predicted. This however does not have any dramatic effects if ordinary
gauge bosons correspond to H-vectorial gauge bosons and axial ones are
heavy enough. Nothing new is predicted for situation in which leptons
do not penetrate inside hadrons. A lepton penetrating into hadron must
suffer an anyonization and becomes fractionally charged and decomposes
into a triplet of leptons with fractional fermion number. This implies that
lepton has strong interactions with quarks.

4. For option III the understanding of the interactions between leptons and
hadrons consisting of genuine quarks becomes a highly non-trivial problem
for several reasons.

i) The hypothesis that only fermions of fixed chirality are possible at a
given space-time sheet would exclude the possibility of non-trivial inter-
actions between leptons and hadrons. If one gives up this assumption the
doubling of electro-weak interactions gives however hopes for describing
the interactions. The non-observability of free quarks in c = 6 phase is
guaranteed if the masses and couplings of H-vectorial and -axial bosons
are identical in this phase. To have interactions in k = 1 phase, these cou-
plings and masses must be different. This would look nice at first since
one could hope of explaining strong interactions in terms of this symmetry
breaking.

ii) However, if H-vectorial and -axial couplings are different inside hadrons,
the expectation is that the resulting low energy lepton-hadron electro-
weak interactions are quite different from what they are known to be
experimentally. The most natural guess suggested by the masslessness of
gluons is that all (say) H-axial weak bosons are massless inside hadrons.
However, if both H-vectorial and -axial photons are massless there would
be no electromagnetic coupling between quarks and leptons and hadrons
would look like em neutral particles at low energies.

iii) The coupling constant characterizing this tunnelling should have a
value making possible to reproduce the standard model picture about
lepton-quark scattering. If only (say) H-vectorial ew bosons can tunnel to
hadron and the amplitude A for the tunnelling equals to A = 2 it gives
amplitude equal to V −V +A−A = 2V −V between leptons then quark-
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lepton scattering can be reproduced correctly. This kind of transformation
is however not described by a unitary S-matrix.

5.5.6 New view about strong interactions

The proposed picture suggests the identification of strong interactions as electro-
weak interactions which have become strong in k = 1 anyonic phase. HO-H
duality leads to the same proposal [E2].

1. Strong interactions as electro-weak interactions in a non-perturbative
phase?

Consider the situation in k = 1, c = 1 hadronic sector at the sheets of 3-fold
covering of M4 at which fractionally charged fermions reside. It is an experi-
mental fact that their electro-weak interactions allow a perturbative description.
One would however obtain all higher order stringy diagrams allowed by rational
conformal field theories. This looks like a paradox but one can consider the
possibility that electro-weak interactions give rise also to strong interactions.

For all options the non-vanishing of higher n-point functions in k = 1, c = 1
phase would give rise to and additional non-perturbative contribution to electro-
weak interactions having a natural interpretation as strong interactions. Weak
isospin and hypercharge could be interpreted also as strong isospin and hyper-
charge as is indeed found to be the case experimentally. Conserved vector
current hypothesis and partially conserved axial current hypothesis of the old-
fashioned hadron physics indeed support this kind of duality.

For option I one can consider the possibility that H-axial bosons define the
dual counterparts of gluons and are massless. H-axial electro-weak interactions
would give rise also to strong interactions between quarks and anyonic leptons
inside hadrons. The idea that color interactions have dual description as H-axial
electro-weak interactions is admittedly rather seductive.

For option III different masses and couplings of H-vectorial and H-axial
bosons inside hadrons would allow to interpret strong interactions as (say) axial
weak interactions. The simplest option would be that H-axial weak bosons are
massless so that strong isospin and hyper-charge would correspond to their H-
axial variants. The problems relating to the interaction between leptons and
hadrons have been already mentioned: for instance, em interactions between
leptons and quarks would vanish if they vanish in c = 6 phase.

2. HO-H duality and equivalence with QCD type description

One can ask how QCD type description emerges if strong interactions are
non-perturbative electro-weak interactions (option II) or H-axial counterparts of
them (option I). In [E2] I have discussed a possible duality suggested by the fact
that space-time surfaces can be regarded as 4-surfaces in hyper-octonionic H =
M8 or in H = M4×CP2. In the first picture spinors would be octonionic spinors
and correspond to two leptonic singlets and color triplet and its conjugate:
there would be no trace about spin and electro-weak quantum numbers besides
electro-weak hyper charge.
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The absence of spin in HO description could provide a resolution of the
spin puzzle of proton (quarks do not seem to contribute to the spin of proton).
In H picture spinors would carry only electro-weak quantum numbers and spin
besides anomalous color hypercharge. The question is whether quark like spinors
in HO are equivalent with leptonic spinors in H and whether the descriptions
based on (possibly) doubled electro-weak and color interactions are equivalent
for many-sheeted coverings.

6 Generalization of the notion of imbedding space
and the notion of number theoretic braid

This section summarizes the the attempt to meet following challenges.

1. Try to understand how the hierarchy of Planck constants is realized at the
level of imbedding space and what quantum criticality for phase transitions
changing Planck constant means.

2. Try to understand the notion of number theoretic braid in terms of quan-
tum criticality. Identification as subset of real and p-adic variant of par-
tonic 2-surface is not enough since some kind of inherent cutoff is needed
to make the braid finite. Here the generalization of imbedding space comes
in rescue and leads to an identification of two kinds of number theoretic
braids assignable to phase transitions in M4 and CP2 degrees changing
the value of Planck constant and corresponding symmetries. One should
also be also able to identify the braiding operation.

6.1 Generalization of the notion of imbedding space

The original idea was that the proposed modification of the imbedding space
could explain naturally phenomena like quantum Hall effect involving fraction-
ization of quantum numbers like spin and charge. This does not however seem
to be the case. Ga×Gb implies just the opposite if these quantum numbers are
assigned with the symmetries of the imbedding space. For instance, quantiza-
tion unit for orbital angular momentum becomes na where Zna is the maximal
cyclic subgroup of Ga.

One can however imagine of obtaining fractionization at the level of imbed-
ding space for space-time sheets, which are analogous to multi-sheeted Riemann
surfaces (say Riemann surfaces associated with z1/n since the rotation by 2π
understood as a homotopy of M4 lifted to the space-time sheet is a non-closed
curve. Continuity requirement indeed allows fractionization of the orbital quan-
tum numbers and color in this kind of situation.

6.1.1 Both covering spaces and factor spaces are possible

The observation above stimulates the question whether it might be possible in
some sense to replace H or its factors by their multiple coverings.
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1. This is certainly not possible for M4, CP2, or H since their fundamen-
tal groups are trivial. On the other hand, the fixing of quantization axes
implies a selection of the sub-space H4 = M2 × S2 ⊂ M4 × CP2, where
S2 is a geodesic sphere of CP2. M̂4 = M4\M2 and ĈP 2 = CP2\S2 have
fundamental group Z since the codimension of the excluded sub-manifold
is equal to two and homotopically the situation is like that for a punc-
tured plane. The exclusion of these sub-manifolds defined by the choice
of quantization axes could naturally give rise to the desired situation.

2. H4 represents a straight cosmic string. Quantum field theory phase cor-
responds to Jones inclusions with Jones index M : N < 4. Stringy phase
would by previous arguments correspond to M : N = 4. Also these
Jones inclusions are labelled by finite subgroups of SO(3) and thus by Zn
identified as a maximal Abelian subgroup.

One can argue that cosmic strings are not allowed in QFT phase. This
would encourage the replacement M̂4 × ˆCP2 implying that surfaces in
M4 × S2 and M2 × CP2 are not allowed. In particular, cosmic strings
and CP2 type extremals with M4 projection in M2 and thus light-like
geodesic without zitterwebegung essential for massivation are forbidden.
This brings in mind instability of Higgs=0 phase.

3. The covering spaces in question would correspond to the Cartesian prod-
ucts M̂4

na
× ˆCP2nb

of the covering spaces of M̂4 and ˆCP2 by Zna
and

Znb
with fundamental group is Zna

× Znb
. One can also consider exten-

sion by replacing M2 and S2 with its orbit under Ga (say tedrahedral,
octahedral, or icosahedral group). The resulting space will be denoted by
M̂4×̂Ga resp. ˆCP2×̂Gb.

4. One expects the discrete subgroups of SU(2) emerge naturally in this
framework if one allows the action of these groups on the singular sub-
manifolds M2 or S2. This would replace the singular manifold with a
set of its rotated copies in the case that the subgroups have genuinely
3-dimensional action (the subgroups which corresponds to exceptional
groups in the ADE correspondence). For instance, in the case of M2 the
quantization axes for angular momentum would be replaced by the set of
quantization axes going through the vertices of tedrahedron, octahedron,
or icosahedron. This would bring non-commutative homotopy groups into
the picture in a natural manner.

5. Also the orbifolds M̂4/Ga × ˆCP2/Gb can be allowed as also the spaces
M̂4/Ga×( ˆCP2×̂Gb) and (M̂4×̂Ga)× ˆCP2/Gb. Hence the previous frame-
work would generalize considerably by the allowance of both coset spaces
and covering spaces.

There are several non-trivial questions related to the details of the gluing
procedure and phase transition as motion of partonic 2-surface from one sector
of the imbedding space to another one.
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1. How the gluing of copies of imbedding space at M2×CP2 takes place? It
would seem that the covariant metric of M4 factor proportional to h̄2 must
be discontinuous at the singular manifold since only in this manner the
idea about different scaling factor of M4 metric can make sense. This is
consistent with the identical vanishing of Chern-Simons action in M2×S2.

2. One might worry whether the phase transition changing Planck constant
means an instantaneous change of the size of partonic 2-surface in M4

degrees of freedom. This is not the case. Light-likeness in M2×S2 makes
sense only for surfaces X1×D2 ⊂M2×S2, where X1 is light-like geodesic.
The requirement that the partonic 2-surface X2 moving from one sector
of H to another one is light-like at M2 × S2 irrespective of the value of
Planck constant requires that X2 has single point of M2 as M2 projection.
Hence no sudden change of the size X2 occurs.

3. A natural question is whether the phase transition changing the value of
Planck constant can occur purely classically or whether it is analogous
to quantum tunnelling. Classical non-vacuum extremals of Chern-Simons
action have two-dimensional CP2 projection to homologically non-trivial
geodesic sphere S2

I . The deformation of the entire S2
I to homologically

trivial geodesic sphere S2
II is not possible so that only combinations of par-

tonic 2-surfaces with vanishing total homology charge (Kähler magnetic
charge) can in principle move from sector to another one, and this process
involves fusion of these 2-surfaces such that CP2 projection becomes sin-
gle homologically trivial 2-surface. A piece of a non-trivial geodesic sphere
S2
I of CP2 can be deformed to that of S2

II using 2-dimensional homotopy
flattening the piece of S2 to curve. If this homotopy cannot be chosen to
be light-like, the phase transitions changing Planck constant take place
only via quantum tunnelling. Obviously the notions of light-like homo-
topies (cobordisms) and classical light-like homotopies (cobordisms) are
very relevant for the understanding of phase transitions changing Planck
constant.

6.1.2 Do factor spaces and coverings correspond to the two kinds of
Jones inclusions?

What could be the interpretation of these two kinds of spaces?

1. Jones inclusions appear in two varieties corresponding to M : N < 4 and
M : N = 4 and one can assign a hierarchy of subgroups of SU(2) with
both of them. In particular, their maximal Abelian subgroups Zn label
these inclusions. The interpretation of Zn as invariance group is natural
for M : N < 4 and it naturally corresponds to the coset spaces. For
M : N = 4 the interpretation of Zn has remained open. Obviously the
interpretation of Zn as the homology group defining covering would be
natural.
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2. M : N = 4 should correspond to the allowance of cosmic strings and other
analogous objects. Does the introduction of the covering spaces bring
in cosmic strings in some controlled manner? Formally the subgroup of
SU(2) defining the inclusion is SU(2) would mean that states are SU(2)
singlets which is something non-physical. For covering spaces one would
however obtain the degrees of freedom associated with the discrete fiber
and the degrees of freedom in question would not disappear completely
and would be characterized by the discrete subgroup of SU(2).

For anyons the non-trivial homotopy of plane brings in non-trivial con-
nection with a flat curvature and the non-trivial dynamics of topological
QFTs. Also now one might expect similar non-trivial contribution to ap-
pear in the spinor connection of M̂2×̂Ga and ĈP 2×̂Gb. In conformal field
theory models non-trivial monodromy would correspond to the presence
of punctures in plane.

3. For factor spaces the unit for quantum numbers like orbital angular mo-
mentum is multiplied by na resp. nb and for coverings it is divided by
this number. These two kind of spaces are in a well defined sense ob-
tained by multiplying and dividing the factors of Ĥ by Ga resp. Gb and
multiplication and division are expected to relate to Jones inclusions with
M : N < 4 and M : N = 4, which both are labelled by a subset of
discrete subgroups of SU(2).

4. The discrete subgroups of SU(2) with fixed quantization axes possess a
well defined multiplication with product defined as the group generated by
forming all possible products of group elements as elements of SU(2). This
product is commutative and all elements are idempotent and thus anal-
ogous to projectors. Trivial group G1, two-element group G2 consisting
of reflection and identity, the cyclic groups Zp, p prime, and tedrahedral,
octahedral, and icosahedral groups are the generators of this algebra.

By commutativity one can regard this algebra as an 11-dimensional mod-
ule having natural numbers as coefficients (”rig”). The trivial group G1,
two-element group G2¡ generated by reflection, and tedrahedral, octahe-
dral, and icosahedral groups define 5 generating elements for this algebra.
The products of groups other than trivial group define 10 units for this
algebra so that there are 11 units altogether. The groups Zp generate
a structure analogous to natural numbers acting as analog of coefficients
of this structure. Clearly, one has effectively 11-dimensional commuta-
tive algebra in 1-1 correspondence with the 11-dimensional ”half-lattice”
N11 (N denotes natural numbers). Leaving away reflections, one obtains
N7. The projector representation suggests a connection with Jones in-
clusions. An interesting question concerns the possible Jones inclusions
assignable to the subgroups containing infinitely manner elements. Reader
has of course already asked whether dimensions 11, 7 and their difference
4 might relate somehow to the mathematical structures of M-theory with
7 compactified dimensions. One could introduce generalized configuration
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space spinor fields in the configuration space labelled by sectors of H with
given quantization axes. By introducing Fourier transform in N11 one
would formally obtain an infinite-component field in 11-D space.

5. How do the Planck constants associated with factors and coverings relate?
One might argue that Planck constant defines a homomorphism respecting
the multiplication and division (when possible) by Gi. If so, then Planck
constant in units of h̄0 would be equal to na/nb for Ĥ/Ga × Gb option
and nb/na for Ĥ×̂(Ga×Gb) with obvious formulas for hybrid cases. This
option would put M4 and CP2 in a very symmetric role and allow much
more flexibility in the identification of symmetries associated with large
Planck constant phases.

6.2 Phase transitions changing the value of Planck con-
stant

There are two basic kinds of phase transitions changing the value of Planck
constant inducing a leakage between sectors of imbedding space. There are
three cases to consider corresponding to

1. leakage in M4 degrees of freedom changing Ga: the critical manifold is
R+ × CP2;

2. leakage in CP2 degrees of freedom changing Gb: the critical manifold is
δM4

+ × S2
II ;

3. leakage in both degrees of freedom changing both Ga and Gb: the critical
manifold is R+ × S2

II . This is the non-generic case

For transitions of type 2) and 3) X2 must go through vacuum extremal in
the classical picture about transition.

Covering space can also change to a factor space in both degrees of freedom
or vice versa and in this case G can remain unchanged as a group although its
interpretation changes.

The phase transitions satisfy also strong group theoretical constraints. For
the transition G1 → G2 either G1 ⊂ G2 or G2 ⊂ G1 must hold true. For
maximal cyclic subgroups Zn associated with quantization axes this means that
n1 must divide n2 or vice versa. Hence a nice number theoretic view about
transitions emerges.

One can classify the points of critical manifold according to the degree of
criticality. Obviously the maximally critical points corresponds to fixed points
of Gi that its points z = 0,∞ of the spheres S2

r and S2
II . In the case of δM4

+ the
points z = 0 and ∞ correspond to the light-like rays R+ in opposite directions.
This ray would define the quantization direction of angular momentum. Quan-
tum phase transitions changing the value of M4 Planck constant could occur
anywhere along this ray (partonic 2-surface would have 1-D projection along
this ray). At the level of cosmology this would bring in a preferred direction.
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Light-cone dip, the counterpart of big bang, is the maximally quantum critical
point since it remains invariant under entire group SO(3, 1).

Interesting questions relate to the groups generated by finite discrete sub-
groups of SO(3). As noticed the groups generated as products of groups leaving
R+ invariant and three genuinely 3-D groups are infinite discrete subgroups of
SO(3) and could also define Jones inclusions. In this case orbifold is replaced
with orbifold containing infinite number of rotated versions of R+. These phases
could be important in elementary particle length scales or in early cosmology.

6.3 The identification of number theoretic braids

Number theoretic braids should be known once partonic surface and correspond-
ing p-adic prime is known. Braid should belong to the intersection of real and
p-adic variant of partonic 2-surface and the definition of should automatically
give rise to a finite braid in case of non-vacuum extremals. Quantum criticality
suggests that there are two kinds of braids. First kind of braid would relate to
phase transitions changing Ga and would correspond to intersection of X2 with
R+ and for given point in intersection would consist of points of CP2 with same
R+ projection. Second kind of braid would relate to phase transitions changing
Gb and correspond to intersection of X2 with S2

II and would consist for given
point of points of S2

r with same S2
II coordinates.

6.3.1 Why a discrete set of points of partonic 2-surface must be
selected?

As already noticed, p-adicization might provide a deeper motivation for the
selection of discrete subset of points of partonic 2-surface in the construction
of S-matrix elements in the case of non-diagonal transitions between different
number fields.

1. The fusion of p-adic variants of TGD with real TGD, could be possible
by algebraic continuation. This however requires the restriction of n-point
functions to a finite set of algebraic points of X2 with the usual stringy
formula formula for S-matrix elements involving an integral over a circle
of X2 replaced with a sum over these points.

2. The same universal formula would give not only ordinary S-matrix ele-
ments but also those for p-adic-to-real transitions describing transforma-
tion intentions to actions. Quite generally, the formula would express
S-matrix elements for transitions between two arbitrary number fields as
algebraic numbers so that p-adicization of the theory would become triv-
ial.

3. The interpretation of this finite set of points as a braid suggests a con-
nection with the representation of Jones inclusions in terms of a hierar-
chy of braids [A8, E9] with the increasing number of strands meaning a
continually improved finite-dimensional approximation of the hyper-finite
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factor of type II1 identifiable as the Clifford algebra for the configuration
space. The hierarchy of approximations for the hyper-finite factor would
correspond to a genuine physical hierarchy of S-matrices corresponding
to increasing dimension of algebraic extension of various p-adic numbers.
This hierarchy would also define a cognitive hierarchy.

What could then be this discrete set of points having interpretation as a
braid?

1. Number theoretical vision suggests that quantum TGD involves the se-
quence hyper-octonions → hyper-quaternions→ complex numbers→ reals
→ finite field G(p, 1) or of its algebraic extension. These reductions would
define number theoretical counterparts of dimensional reductions. The
points in the finite field G(p, 1) could be defined by p-adic integers mod-
ulo p so that a connection with p-adic numbers would emerge. Also more
general algebraic extensions of p-adic numbers are allowed.

2. Number theoretical braids must belong to the intersection of real partonic
2-surface and its p-adic counterpart and thus the points must be algebraic
points. Besides this a natural cutoff determined by X2 itself is needed in
order to have only finite number of points.

3. The generalization of the imbedding space inspired by the hierarchy of
Planck constants suggest a very concrete identification of number theoretic
braids in terms of intersections of partonic 2-surface and critical manifolds
R+ and S2

II involving no ad hoc assumptions and giving braids having
finite number of points.

6.3.2 About the precise definition of number theoretical braid

The precise definition of number theoretic braids has been a challenge for long
time. The generalization of the notion of imbedding space however leads to
good guess for the identification of number theoretical braids.

What is clear that the points of number theoretic braid belong to the in-
tersection of the real and p-adic variant of partonic 2-surfaces consisting of
rationals and algebraic points in the extension used for p-adic numbers. The
points of braid have same projection on an algebraic point of a geodesic sphere
of S2 ⊂ CP2 belonging to the algebraic extension of rationals considered.

There are two different geodesic spheres in CP2 and the homologically trivial
geodesic sphere S2

II is the most natural choice from the point of view of the
generalized imbedding space since M2×S2

II , which defines the intersection of all
sectors of H, is a vacuum extremal so that the ill-definedness of Planck constant
does not matter. Note that also the M4 part of the metric is discontinuous at
M2 × S2

II .
One can argue that algebraicity condition is not strong enough and gives

too many points unless one introduces a cutoff in some manner. Since TQFT
like theory can naturally assigned with the partonic 2-surfaces in M2×S2

II , the

129



natural identification of the intersection points of number theoretical braids with
δM4
±×CP2 would be as the intersection of the 2-D CP2 projection of the partonic

2-surface in δM4
± × CP2 with S2

II . In the generic case the intersection would
consist of discrete points and for non-vacuum extremals this would certainly be
the case. The intersection should consist of algebraic points allowing also p-adic
interpretation: the condition that CP2 projection is an algebraic surface is a
necessary condition for this.

The points of braid are obtained as solutions of polynomial equation and
thus one can assign to them a Galois group permuting the points of the braid.
In this case finite Galois group could be realized as left or right translation or
conjugation in S∞ or in braid group.

To make the notion of number theoretic braid more concrete, suppose that
the complex coordinate w of δM4

± is expressible as a polynomial of the complex
coordinate z of CP2 geodesic sphere and the radial light-like coordinate r of
δM4
± is obtained as a solution of polynomial equation P (r, z, w) = 0. By substi-

tuting w as a polynomial w = Q(z, r) of z and r this gives polynomial equation
P (r, z,Q(z, r)) = 0 for r for a given value of z. Only real roots can be accepted.
Local Galois group (in a sense different as it is used normally in literature) as-
sociated with the algebraic point of S2 defining the number theoretical braid is
thus well defined.

If the partonic 2-surface involves all roots of an irreducible polynomial, one
indeed obtains a braid for each point of the geodesic sphere S2 ⊂ CP2. In this
case the action of Galois group is naturally a braid group action realized as the
action on induced spinor fields and configuration space spinors.

The choice of the points of braid as points common to the real and p-adic
partonic 2-surfaces would be unique so that the obstacle created by the fact that
the finite Galois group as function of point of S2 fluctuates wildly (when some
roots become rational Galois group changes dramatically: the simplest example
is provided by y − x2 = 0 for which Galois group is Z2 when y is not a square
of rational and trivial group if y is rational).

This picture looks nice but a closer inspection show that it is not quite
correct. The identification of Higgs field as a purely geometrical object leads to
the identification of intersection points as unstable extrema of negative valued
Higgs potential for which Higgs vanishes. The stable minima correspond to the
extrema in the vicinity of these maxima and correspond to non-vanishing Higgs
field (the nearest valley for a peak of 2-D landscape defined on sphere). The
minima (bottoms of valleys) define both physically and mathematically natural
candidate for the number theoretical braids. At quantum criticality these braids
approach to zero braids. Thus one can say that the original identification is
correct apart from Higgs mechanism.

6.3.3 What is the fundamental braiding operation?

The basic quantum dynamics of TGD could define the braiding operation for
the braid defined by a discrete set of points of X2 satisfying the algebraicity
conditions. I have considered several candidates for braiding operation and the
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situation is still partially unsettled.
One promising candidate for the braiding operation is found by observing

that both Kähler gauge potential and Kähler magnetic field define flows at
light-like partonic 3-surface. The dual of the induced Kähler form defines a
conserved topological current, whose flow lines are field lines of the Kähler
magnetic field in the light like direction. This flow is incompressible. Vector
potential defines also a flow in the interior of space-time surface, and Chern-
Simons action at partonic 3-surface defines a topological invariant of this flow
known as helicity in hydrodynamics. The non-gauge invariance of helicity is
not a problem since symplectic transformations of CP2 do not define gauge
degeneracy but spin glass degeneracy. The flow defined by the vector potential
is perhaps the most attractive option but one cannot exclude the possibility
that the braids defined by both flows play a role in the definition of S-matrix.
Number theoretical braid (tangle if flow line fuse or split) would correspond
to the unique orbit for the points of the number theoretic braid at the initial
partonic 2-surface. The points of the braid would be algebraic only in suitably
chosen discrete time slices but this would not lead to a loss of uniqueness. Hence
cobordism would become discrete. This picture makes sense also for macroscopic
2-surfaces defining outer boundaries of physical systems (quantum Hall effect
and topological quantum computation [E9]). This picture makes sense also for
macroscopic 2-surfaces defining outer boundaries of physical systems (quantum
Hall effect and topological quantum computation [E9]).

The second candidate for the braiding operation emerges naturally when one
identifies the points defining the number theoretic braid in terms of minima of
Higgs field defined on X2 (the details of this identification are discussed later).
In this case time evolution takes minima to minima and can induce braiding for
the projections of the points of braid to S2

II resp. S2
r . One might hope that

the braiding associated with S2
r resp. S2

II is topologically equivalent with the
braiding defined by Kähler gauge potential resp. Kähler magnetic field.

7 Could a symplectic analog of conformal field
theory be relevant for quantum TGD?

Symplectic (or canonical as I have called them) symmetries of δM4
+ × CP2

(light-cone boundary briefly) act as isometries of the ”world of classical worlds”.
One can see these symmetries as analogs of Kac-Moody type symmetries with
symplectic transformations of S2 × CP2, where S2 is rM = constant sphere of
lightcone boundary, made local with respect to the light-like radial coordinate
rM taking the role of complex coordinate. Thus finite-dimensional Lie group G
is replaced with infinite-dimensional group of symplectic transformations. This
inspires the question whether a symplectic analog of conformal field theory
at δM4

+ × CP2 could be relevant for the construction of n-point functions in
quantum TGD and what general properties these n-point functions would have.
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7.1 Symplectic QFT at sphere

Actually the notion of symplectic QFT emerged as I tried to understand the
properties of cosmic microwave background which comes from the sphere of
last scattering which corresponds roughly to the age of 5 × 105 years [D8]. In
this situation vacuum extremals of Kähler action around almost unique critical
Robertson-Walker cosmology imbeddable in M4 × S2, where there is homo-
logically trivial geodesic sphere of CP2. Vacuum extremal property is satis-
fied for any space-time surface which is surface in M4 × Y 2, Y 2 a Lagrangian
sub-manifold of CP2 with vanishing induced Kähler form. Symplectic transfor-
mations of CP2 and general coordinate transformations of M4 are dynamical
symmetries of the vacuum extremals so that the idea of symplectic QFT emerges
natural. Therefore I shall consider first symplectic QFT at the sphere S2 of last
scattering with temperature fluctution ∆T/T proportional to the fluctuation of
the metric component gaa in Robertson-Walker coordinates.

1. In quantum TGD the symplectic transformation of the light-cone bound-
ary would induce action in the ”world of classical worlds” (light-like 3-
surfaces). In the recent situation it is convenient to regard perturbations
of CP2 coordinates as fields at the sphere of last scattering (call it S2)
so that symplectic transformations of CP2 would act in the field space
whereas those of S2 would act in the coordinate space just like conformal
transformations. The deformation of the metric would be a symplectic
field in S2. The symplectic dimension would be induced by the tensor
properties of R-W metric in R-W coordinates: every S2 coordinate index
would correspond to one unit of symplectic dimension. The symplectic
invariance in CP2 degrees of freedom is guaranteed if the integration mea-
sure over the vacuum deformations is symplectic invariant. This symmetry
does not play any role in the sequel.

2. For a symplectic scalar field n ≥ 3-point functions with a vanishing anoma-
lous dimension would be functions of the symplectic invariants defined by
the areas of geodesic polygons defined by subsets of the arguments as
points of S2. Since n-polygon can be constructed from 3-polygons these
invariants can be expressed as sums of the areas of 3-polygons express-
ible in terms of symplectic form. n-point functions would be constant
if arguments are along geodesic circle since the areas of all sub-polygons
would vanish in this case. The decomposition of n-polygon to 3-polygons
brings in mind the decomposition of the n-point function of conformal
field theory to products of 2-point functions by using the fusion algebra of
conformal fields (very symbolically ΦkΦl = cmklΦm). This intuition seems
to be correct.

3. Fusion rules stating the associativity of the products of fields at different
points should generalize. In the recent case it is natural to assume a non-
local form of fusion rules given in the case of symplectic scalars by the
equation
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Φk(s1)Φl(s2) =
∫
cmklf(A(s1, s2, s3))Φm(s)dµs . (84)

Here the coefficients cmkl are constants and A(s1, s2, s3) is the area of the
geodesic triangle of S2 defined by the sympletic measure and integration is
over S2 with symplectically invariant measure dµs defined by symplectic
form of S2. Fusion rules pose powerful conditions on n-point functions
and one can hope that the coefficients are fixed completely.

4. The application of fusion rules gives at the last step an expectation value
of 1-point function of the product of the fields involves unit operator term∫
cklf(A(s1, s2, s))Iddµs so that one has

〈Φk(s1)Φl(s2)〉 =
∫
cklf(A(s1, s2, s))dµs . (85)

Hence 2-point function is average of a 3-point function over the third
argument. The absence of non-trivial symplectic invariants for 1-point
function means that n = 1- an are constant, most naturally vanishing,
unless some kind of spontaneous symmetry breaking occurs. Since the
function f(A(s1, s2, s3)) is arbitrary, 2-point correlation function can have
both signs. 2-point correlation function is invariant under rotations and
reflections.

7.2 Symplectic QFT with spontaneous breaking of rota-
tional and reflection symmetries

CMB data suggest breaking of rotational and reflection symmetries of S2. A
possible mechanism of spontaneous symmetry breaking is based on the observa-
tion that in TGD framework the hierarchy of Planck constants assigns to each
sector of the generalized imbedding space a preferred quantization axes. The
selection of the quantization axis is coded also to the geometry of ”world of
classical worlds”, and to the quantum fluctuations of the metric in particular.
Clearly, symplectic QFT with spontaneous symmetry breaking would provide
the sought-for really deep reason for the quantization of Planck constant in the
proposed manner.

1. The coding of angular momentum quantization axis to the generalized
imbedding space geometry allows to select South and North poles as pre-
ferred points of S2. To the three arguments s1, s2, s3 of the 3-point func-
tion one can assign two squares with the added point being either North
or South pole. The difference

∆A(s1, s2, s3) ≡ A(s1, s2, s3, N)−A(s1, s2, s3, S) (86)
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of the corresponding areas defines a simple symplectic invariant breaking
the reflection symmetry with respect to the equatorial plane. Note that
∆A vanishes if arguments lie along a geodesic line or if any two arguments
co-incide. Quite generally, symplectic QFT differs from conformal QFT
in that correlation functions do not possess singularities.

2. The reduction to 2-point correlation function gives a consistency condi-
tions on the 3-point functions

〈(Φk(s1)Φl(s2))Φm(s3)〉 = crkl

∫
f(∆A(s1, s2, s))〈Φr(s)Φm(s3)〉dµs

= (87)

crklcrm

∫
f(∆A(s1, s2, s))f(∆A(s, s3, t))dµsdµt . (88)

Associativity requires that this expression equals to 〈Φk(s1)(Φl(s2)Φm(s3))〉
and this gives additional conditions. Associativity conditions apply to
f(∆A) and could fix it highly uniquely.

3. 2-point correlation function would be given by

〈Φk(s1)Φl(s2)〉 = ckl

∫
f(∆A(s1, s2, s))dµs (89)

4. There is a clear difference between n > 3 and n = 3 cases: for n > 3
also non-convex polygons are possible: this means that the interior angle
associated with some vertices of the polygon is larger than π. n = 4
theory is certainly well-defined, but one can argue that so are also n > 4
theories and skeptic would argue that this leads to an inflation of theories.
TGD however allows only finite number of preferred points and fusion
rules could eliminate the hierarchy of theories.

5. To sum up, the general predictions are following. Quite generally, for
f(0) = 0 n-point correlation functions vanish if any two arguments co-
incide which conforms with the spectrum of temperature fluctuations. It
also implies that symplectic QFT is free of the usual singularities. For sym-
metry breaking scenario 3-point functions and thus also 2-point functions
vanish also if s1 and s2 are at equator. All these are testable predictions
using ensemble of CMB spectra.

7.3 Generalization to quantum TGD

Since number theoretic braids are the basic objects of quantum TGD, one can
hope that the n-point functions assignable to them could code the properties
of ground states and that one could separate from n-point functions the parts
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which correspond to the symplectic degrees of freedom acting as symmetries of
vacuum extremals and isometries of the ’world of classical worlds’.

1. This approach indeed seems to generalize also to quantum TGD proper
and the n-point functions associated with partonic 2-surfaces can be de-
composed in such a manner that one obtains coefficients which are sym-
plectic invariants associated with both S2 and CP2 Kähler form.

2. Fusion rules imply that the gauge fluxes of respective Kähler forms over
geodesic triangles associated with the S2 and CP2 projections of the ar-
guments of 3-point function serve basic building blocks of the correlation
functions. The North and South poles of S2 and three poles of CP2 can
be used to construct symmetry breaking n-point functions as symplectic
invariants. Non-trivial 1-point functions vanish also now.

3. The important implication is that n-point functions vanish when some
of the arguments co-incide. This might play a crucial role in taming of
the singularities: the basic general prediction of TGD is that standard
infinities of local field theories should be absent and this mechanism might
realize this expectation.

Next some more technical but elementary first guesses about what might be
involved.

1. It is natural to introduce the moduli space for n-tuples of points of the sym-
plectic manifold as the space of symplectic equivalence classes of n-tuples.
In the case of sphere S2 convex n-polygon allows n + 1 3-sub-polygons
and the areas of these provide symplectically invariant coordinates for the
moduli space of symplectic equivalence classes of n-polygons (2n-D space
of polygons is reduced to n + 1-D space). For non-convex polygons the
number of 3-sub-polygons is reduced so that they seem to correspond to
lower-dimensional sub-space. In the case of CP2 n-polygon allows be-
sides the areas of 3-polygons also 4-volumes of 5-polygons as fundamen-
tal symplectic invariants. The number of independent 5-polygons for n-
polygon can be obtained by using induction: once the numbers N(k, n)
of independent k ≤ n-simplices are known for n-simplex, the numbers of
k ≤ n + 1-simplices for n + 1-polygon are obtained by adding one ver-
tex so that by little visual gymnastics the numbers N(k, n+ 1) are given
by N(k, n + 1) = N(k − 1, n) + N(k, n). In the case of CP2 the al-
lowance of 3 analogs {N,S, T} of North and South poles of S2 means that
besides the areas of polygons (s1, s2, s3), (s1, s2, s3, X), (s1, s2, s3, X, Y ),
and (s1, s2, s3, N, S, T ) also the 4-volumes of 5-polygons (s1, s2, s3, X, Y ),
and of 6-polygon (s1, s2, s3, N, S, T ), X,Y ∈ {N,S, T} can appear as ad-
ditional arguments in the definition of 3-point function.

2. What one really means with symplectic tensor is not clear since the naive
first guess for the n-point function of tensor fields is not manifestly general
coordinate invariant. For instance, in the model of CMB, the components
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of the metric deformation involving S2 indices would be symplectic ten-
sors. Tensorial n-point functions could be reduced to those for scalars
obtained as inner products of tensors with Killing vector fields of SO(3)
at S2. Again a preferred choice of quantization axis would be introduced
and special points would correspond to the singularities of the Killing
vector fields.

The decomposition of Hamiltonians of the ”world of classical worlds” ex-
pressible in terms of Hamiltonians of S2 × CP2 to irreps of SO(3) and
SU(3) could define the notion of symplectic tensor as the analog of spher-
ical harmonic at the level of configuration space. Spin and gluon color
would have natural interpretation as symplectic spin and color. The in-
finitesimal action of various Hamiltonians on n-point functions defined by
Hamiltonians and their super counterparts is well-defined and group the-
oretical arguments allow to deduce general form of n-point functions in
terms of symplectic invariants.

3. The need to unify p-adic and real physics by requiring them to be com-
pletions of rational physics, and the notion of finite measurement resolu-
tion suggest that discretization of also fusion algebra is necessary. The
set of points appearing as arguments of n-point functions could be fi-
nite in a given resolution so that the p-adically troublesome integrals in
the formulas for the fusion rules would be replaced with sums. Perhaps
rational/algebraic variants of S2 × CP2 = SO(3)/SO(2) × SU(3)/U(2)
obtained by replacing these groups with their rational/algebraic variants
are involved. Tedrahedra, octahedra, and dodecahedra suggest themselves
as simplest candidates for these discretized spaces. Also the symplectic
moduli space would be discretized to contain only n-tuples for which the
symplectic invariants are numbers in the allowed algebraic extension of ra-
tionals. This would provide an abstract looking but actually very concrete
operational approach to the discretization involving only areas of n-tuples
as internal coordinates of symplectic equivalence classes of n-tuples. The
best that one could achieve would be a formulation involving nothing be-
low measurement resolution.

4. This picture based on elementary geometry might make sense also in the
case of conformal symmetries. The angles associated with the vertices of
the S2 projection of n-polygon could define conformal invariants appearing
in n-point functions and the algebraization of the corresponding phases
would be an operational manner to introduce the space-time correlates
for the roots of unity introduced at quantum level. In CP2 degrees of
freedom the projections of n-tuples to the homologically trivial geodesic
sphere S2 associated with the particular sector of CH would allow to define
similar conformal invariants. This framework gives dimensionless areas
(unit sphere is considered). p-Adic length scale hypothesis and hierarchy
of Planck constants would bring in the fundamental units of length and
time in terms of CP2 length.

136



The recent view about M-matrix described in [C3] is something almost
unique determined by Connes tensor product providing a formal realization
for the statement that complex rays of state space are replaced with N rays
where N defines the hyper-finite sub-factor of type II1 defining the measure-
ment resolution. M -matrix defines time-like entanglement coefficients between
positive and negative energy parts of the zero energy state and need not be
unitary. It is identified as square root of density matrix with real expressible as
product of of real and positive square root and unitary S-matrix. This S-matrix
is what is measured in laboratory. There is also a general vision about how ver-
tices are realized: they correspond to light-like partonic 3-surfaces obtained by
gluing incoming and outgoing partonic 3-surfaces along their ends together just
like lines of Feynman diagrams. Note that in string models string world sheets
are non-singular as 2-manifolds whereas 1-dimensional vertices are singular as
1-manifolds. These ingredients we should be able to fuse together. So we try
once again!

1. Iteration starting from vertices and propagators is the basic approach in
the construction of n-point function in standard QFT. This approach does
not work in quantum TGD. Symplectic and conformal field theories sug-
gest that recursion replaces iteration in the construction. One starts from
an n-point function and reduces it step by step to a vacuum expecta-
tion value of a 2-point function using fusion rules. Associativity becomes
the fundamental dynamical principle in this process. Associativity in the
sense of classical number fields has already shown its power and led to a
hyper-octoninic formulation of quantum TGD promising a unification of
various visions about quantum TGD [E2].

2. Let us start from the representation of a zero energy state in terms of
a causal diamond defined by future and past directed light-cones. Zero
energy state corresponds to a quantum superposition of light-like partonic
3-surfaces each of them representing possible particle reaction. These
3-surfaces are very much like generalized Feynman diagrams with lines re-
placed by light-like 3-surfaces coming from the upper and lower light-cone
boundaries and glued together along their ends at smooth 2-dimensional
surfaces defining the generalized vertices.

3. It must be emphasized that the generalization of ordinary Feynman dia-
grammatics arises and conformal and symplectic QFTs appear only in the
calculation of single generalized Feynman diagram. Therefore one could
still worry about loop corrections. The fact that no integration over loop
momenta is involved and there is always finite cutoff due to discretization
together with recursive instead of iterative approach gives however good
hopes that everything works. Note that this picture is in conflict with one
of the earlier approaches based on positive energy ontology in which the
hope was that only single generalized Feynman diagram could define the
U-matrix thought to correspond to physical S-matrix at that time [E10].
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4. One can actually simplify things by identifying generalized Feynman di-
agrams as maxima of Kähler function with functional integration carried
over perturbations around it. Thus one would have conformal field theory
in both fermionic and configuration space degrees of freedom. The light-
like time coordinate along light-like 3-surface is analogous to the complex
coordinate of conformal field theories restricted to some curve. If it is
possible continue the light-like time coordinate to a hyper-complex coor-
dinate in the interior of 4-D space-time sheet, the correspondence with
conformal field theories becomes rather concrete. Same applies to the
light-like radial coordinates associated with the light-cone boundaries. At
light-cone boundaries one can apply fusion rules of a symplectic QFT to
the remaining coordinates. Conformal fusion rules are applied only to
point pairs which are at different ends of the partonic surface and there
are no conformal singularities since arguments of n-point functions do not
co-incide. By applying the conformal and symplectic fusion rules one can
eventually reduce the n-point function defined by the various fermionic
and bosonic operators appearing at the ends of the generalized Feynman
diagram to something calculable.

5. Finite measurement resolution defining the Connes tensor product is real-
ized by the discretization applied to the choice of the arguments of n-point
functions so that discretion is not only a space-time correlate of finite res-
olution but actually defines it. No explicit realization of the measurement
resolution algebra N seems to be needed. Everything should boil down to
the fusion rules and integration measure over different 3-surfaces defined
by exponent of Kähler function and by imaginary exponent of Chern-
Simons action. The continuation of the configuration space Clifford alge-
bra for 3-surfaces with cm degrees of freedom fixed to a hyper-octonionic
variant of gamma matrix field of super-string models defined inM8 (hyper-
octonionic space) and M8 ↔ M4 × CP2 duality leads to a unique choice
of the points, which can contribute to n-point functions as intersection of
M4 subspace of M8 with the counterparts of partonic 2-surfaces at the
boundaries of light-cones of M8. Therefore there are hopes that the re-
sulting theory is highly unique. Symplectic fusion algebra reduces to a
finite algebra for each space-time surface if this picture is correct.

6. Consider next some of the details of how the light-like 3-surface codes for
the fusion rules associated with it. The intermediate partonic 2- surfaces
must be involved since otherwise the construction would carry no infor-
mation about the properties of the light-like 3-surface, and one would not
obtain perturbation series in terms of the relevant coupling constants. The
natural assumption is that partonic 2-surfaces belong to future/past di-
rected light-cone boundary depending on whether they are on lower/upper
half of the causal diamond. Hyper-octonionic conformal field approach
fixes the nint points at intermediate partonic two-sphere for a given light-
like 3-surface representing generalized Feynman diagram, and this means
that the contribution is just N -point function with N = nout + nint + nin
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calculable by the basic fusion rules. Coupling constant strengths would
emerge through the fusion coefficients, and at least in the case of gauge
interactions they must be proportional to Kähler coupling strength since
n-point functions are obtained by averaging over small deformations with
vacuum functional given by the exponent of Kähler function. The first
guess is that one can identify the spheres S2 ⊂ δM4

± associated with ini-
tial, final and, and intermediate states so that symplectic n-point functions
could be calculated using single sphere.

These findings raise the hope that quantum TGD is indeed a solvable the-
ory. Even if one is not willing to swallow any bit of TGD, the classification of
the symplectic QFTs remains a fascinating mathematical challenge in itself. A
further challenge is the fusion of conformal QFT and symplectic QFT in the con-
struction of n-point functions. One might hope that conformal and symplectic
fusion rules can be treated separately.

8 Could local zeta functions take the role of Rie-
mann Zeta in TGD framework?

The recent view about TGD leads to some conjectures about Riemann Zeta.

1. Non-trivial zeros should be algebraic numbers.

2. The building blocks in the product decomposition of ζ should be algebraic
numbers for non-trivial zeros of zeta.

3. The values of zeta for their combinations with positive imaginary part
with positive integer coefficients should be algebraic numbers.

These conjectures are motivated by the findings that Riemann Zeta seems
to be associated with critical systems and by the fact that non-trivial zeros of
zeta are analogous to complex conformal weights or perhaps more naturally, to
complex square roots of real conformal weights [A9]. The necessity to make such
a strong conjectures, in particular conjecture c), is an unsatisfactory feature of
the theory and one could ask how to modify this picture. Also a clear physical
interpretation of Riemann zeta is lacking.

It was also found that there are good reasons for expecting that the zetas
in question should have only a finite number zeros. In the same section the
self-referentiality hypothesis for ζ was proposed on basis of physical arguments.
In this section (written before the emergence of self-referentiality hypothesis)
the situation will be discussed from different view point.

8.1 Local zeta functions and Weil conjectures

Riemann Zeta is not the only zeta [49, 48]. There is entire zoo of zeta functions
and the natural question is whether some other zeta sharing the basic properties
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of Riemann zeta having zeros at critical line could be more appropriate in TGD
framework.

The so called local zeta functions analogous to the factors ζp(s) = 1/(1−p−s)
of Riemann Zeta can be used to code algebraic data about say numbers about
solutions of algebraic equations reduced to finite fields. The local zeta functions
appearing in Weil’s conjectures [50] associated with finite fields G(p, k) and
thus to single prime. The extensions G(p, nk) of this finite field are considered.
These local zeta functions code the number for the points of algebraic variety
for given value of n. Weil’s conjectures also state that if X is a mod p reduction
of non-singular complex projective variety then the degree for the polynomial
multiplying the product ζ(s)× ζ(s− 1) equals to Betti number. Betti number
is 2 times genus in 2-D case.

It has been proven that the zetas of Weil are associated with single prime
p, they satisfy functional equation, their zeros are at critical lines, and rather
remarkably, they are rational functions of p−s. For instance, for elliptic curves
zeros are at critical line [50].

The general form for the local zeta is ζ(s) = exp(G(s)), whereG =
∑
gnp
−ns,

gn = Nn/n, codes for the numbers Nn of points of algebraic variety for nth ex-
tension of finite field F with nk elements assuming that F has k = pr elements.
This transformation resembles the relationship Z = exp(F ) between partition
function and free energy Z = exp(F ) in thermodynamics.

The exponential form is motivated by the possibility to factorize the zeta
function into a product of zeta functions. Note also that in the situation when
Nn approaches constant N∞, the division of Nn by n gives essentially 1/(1 −
N∞p

−s) and one obtains the factor of Riemann Zeta at a shifted argument
s − logp(N∞). The local zeta associated with Riemann Zeta corresponds to
Nn = 1.

8.2 Local zeta functions and TGD

The local zetas are associated with single prime p, they satisfy functional equa-
tion, their zeros lie at the critical lines, and they are rational functions of p−s.
These features are highly desirable from the TGD point of view.

8.2.1 Why local zeta functions are natural in TGD framework?

In TGD framework modified Dirac equation assigns to a partonic 2-surface a
p-adic prime p and inverse of the zeta defines local conformal weight. The
intersection of the real and corresponding p-adic parton 2-surface is the set
containing the points that one is interested in. Hence local zeta sharing the
basic properties of Riemann zeta is highly desirable and natural. In particular,
if the local zeta is a rational function then the inverse images of rational points
of the geodesic sphere are algebraic numbers. Of course, one might consider a
stronger constraint that the inverse image is rational. Note that one must still
require that p−s as well as s are algebraic numbers for the zeros of the local
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zeta (conditions a) and b) listed in the beginning) if one wants the number
theoretical universality.

Since the modified Dirac operator assigns to a given partonic 2-surface a
p-adic prime p, one can ask whether the inverse ζ−1

p (z) of some kind of local
zeta directly coding data about partonic 2-surface could define the generalized
eigenvalues of the modified Dirac operator and radial super-canonical conformal
weights so that the conjectures about Riemann Zeta would not be needed at all.

The eigenvalues of the modified Dirac operator would in a holographic man-
ner code for information about partonic 2-surface. This kind of algebraic geo-
metric data are absolutely relevant for TGD since U-matrix and probably also
S-matrix must be formulated in terms of the data related to the intersection
of real and partonic 2-surfaces (number theoretic braids) obeying same alge-
braic equations and consisting of algebraic points in the appropriate algebraic
extension of p-adic numbers. Note that the hierarchy of algebraic extensions of
p-adic number fields would give rise to a hierarchy of zetas so that the algebraic
extension used would directly reflect itself in the eigenvalue spectrum of the
modified Dirac operator and super-canonical conformal weights. This is highly
desirable but not achieved if one uses Riemann Zeta.

One must of course leave open the possibility that for real-real transitions the
inverse of the zeta defined as a product of the local zetas (very much analogous
to Riemann Zeta) defines the conformal weights. This kind of picture would
conform with the idea about real physics as a kind of adele formed from p-adic
physics.

8.2.2 Finite field hierarchy is not natural in TGD context

That local zeta functions are assigned with a hierarchy of finite field extensions
do not look natural in TGD context. The reason is that these extensions are
regarded as abstract extensions of G(p, k) as opposed to a large number of
algebraic extensions isomorphic with finite fields as abstract number fields and
induced from the extensions of p-adic number fields. Sub-field property is clearly
highly relevant in TGD framework just as the sub-manifold property is crucial
for geometrizing also other interactions than gravitation in TGD framework.

The O(pn) hierarchy for the p-adic cutoffs would naturally replace the hi-
erarchy of finite fields. This hierarchy is quite different from the hierarchy of
finite fields since one expects that the number of solutions becomes constant at
the limit of large n and also at the limit of large p so that powers in the func-
tion G coding for the numbers of solutions of algebraic equations as function of
n should not increase but approach constant N∞. The possibility to factorize
exp(G) to a product exp(G0)exp(G∞) would mean a reduction to a product of
a rational function and factor(s) ζp(s) = 1/(1− p−s1) associated with Riemann
Zeta with argument s shifted to s1 = s− logp(N∞).

8.2.3 What data local zetas could code?

The next question is what data the local zeta functions could code.
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1. It is not at clear whether it is useful to code global data such as the
numbers of points of partonic 2-surface modulo pn. The notion of number
theoretic braid occurring in the proposed approach to S-matrix suggests
that the zeta at an algebraic point z of the geodesic sphere S2 of CP2 or
of light-cone boundary should code purely local data such as the numbers
Nn of points which project to z as function of p-adic cutoff pn. In the
generic case this number would be finite for non-vacuum extremals with 2-
D S2 projection. The nth coefficient gn = Nn/n of the function Gp would
code the number Nn of these points in the approximation O(pn+1) = 0
for the algebraic equations defining the p-adic counterpart of the partonic
2-surface.

2. In a region of partonic 2-surface where the numbers Nn of these points
remain constant, ζ(s) would have constant functional form and therefore
the information in this discrete set of algebraic points would allow to
deduce deduce information about the numbers Nn. Both the algebraic
points and generalized eigenvalues would carry the algebraic information.

3. A rather fascinating self referentiality would result: the generalized eigen
values of the modified Dirac operator expressible in terms of inverse of zeta
would code data for a sequence of approximations for the p-adic variant
of the partonic 2-surface. This would be natural since second quantized
induced spinor fields are correlates for logical thought in TGD inspired
theory of consciousness. Even more, the data would be given at points
ζ(s), s a rational value of a super-canonical conformal weight or a value
of generalized eigenvalue of modified Dirac operator (which is essentially
function s = ζ−1

p (z) at geodesic sphere of CP2 or of light-cone boundary).

8.3 Galois groups, Jones inclusions, and infinite primes

Langlands program [52, 53] is an attempt to unify mathematics using the idea
that all zeta functions and corresponding theta functions could emerge as au-
tomorphic functions giving rise to finite-dimensional representations for Galois
groups (Galois group is defined as a group of automorphisms of the extension of
field F leaving invariant the elements of F ). The basic example corresponds to
rationals and their extensions. Finite fields G(p, k) and their extensions G(p, nk)
represents another example. The largest extension of rationals corresponds to
algebraic numbers (algebraically closed set). Although this non-Abelian group
is huge and does not exist in the usual sense of the word its finite-dimensional
representations in groups GL(n,Z) make sense.

For instance, Edward Witten is working with the idea that geometric variant
of Langlands duality could correspond to the dualities discovered in string model
framework and be understood in terms of topological version of four-dimensional
N = 4 super-symmetric YM theory [33]. In particular, Witten assigns surface
operators to the 2-D surfaces of 4-D space-time. This brings unavoidably in
mind partonic 2-surfaces and TGD as N = 4 super-conformal almost topological
QFT.
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This observation stimulates some ideas about the role of zeta functions in
TGD if one takes the vision about physics as a generalized number theory
seriously.

8.3.1 Galois groups, Jones inclusions, and quantum measurement
theory

The Galois representations appearing in Langlands program could have a con-
crete physical/cognitive meaning.

1. The Galois groups associated with the extensions of rationals have a natu-
ral action on partonic 2-surfaces represented by algebraic equations. Their
action would reduce to permutations of roots of the polynomial equations
defining the points with a fixed projection to the above mentioned geodesic
sphere S2 of CP2 or δM4

+. This makes possible to define modes of induced
spinor fields transforming under representations of Galois groups. Galois
groups would also have a natural action on configuration space-spinor
fields. One can also speak about configuration space spinors invariant
under Galois group.

2. Galois groups could be assigned to Jones inclusions having an interpre-
tation in terms of a finite measurement resolution in the sense that the
discrete group defining the inclusion leaves invariant the operators gener-
ating excitations which are not detectable.

3. The physical interpretation of the finite resolution represented by Galois
group would be based on the analogy with particle physics. The field ex-
tension K/F implies that the primes (more precisely, prime ideals) of F
decompose into products of primes (prime ideals) of K. Physically this
corresponds to the decomposition of particle into more elementary con-
stituents, say hadrons into quarks in the improved resolution implied by
the extension F → K. The interpretation in terms of cognitive resolution
would be that the primes associated with the higher extensions of rationals
are not cognizable: in other words, the observed states are singlets under
corresponding Galois groups: one has algebraic/cognitive counterpart of
color confinement.

4. For instance, the system labelled by an ordinary p-adic prime could de-
compose to a system which is a composite of Gaussian primes. Interest-
ingly, the biologically highly interesting p-adic length scale range 10 nm-5
µm contains as many as four Gaussian Mersennes (Mk = (1 + i)k − 1,
k = 151, 157, 163, 167), which suggests that the emergence of living mat-
ter means an improved cognitive resolution.

8.3.2 Galois groups and infinite primes

In particular, the notion of infinite prime suggests a manner to realize the mod-
ular functions as representations of Galois groups. Infinite primes might also
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provide a new perspective to the concrete realization of Langlands program.

1. The discrete Galois groups associated with various extensions of rationals
and involved with modular functions which are in one-one correspondence
with zeta functions via Mellin transform defined as

∑
xnn

−s →
∑
xnz

n

[51]. Various Galois groups would have a natural action in the space
of infinite primes having interpretation as Fock states and more general
bound states of an arithmetic quantum field theory.

2. The number theoretic anatomy of space-time points due to the possibility
to define infinite number of number theoretically non-equivalent real units
using infinite rationals [17] allows the imbedding space points themselves
to code holographically various things. Galois groups would have a nat-
ural action in the space of real units and thus on the number theoretical
anatomy of a point of imbedding space.

3. Since the repeated second quantization of the super-symmetric arithmetic
quantum field theory defined by infinite primes gives rise to a huge space
of quantum states, the conjecture that the number theoretic anatomy of
imbedding space point allows to represent configuration space (the world
of classical worlds associated with the light-cone of a given point of H)
and configuration space spinor fields emerges naturally [17].

4. Since Galois groups G are associated with inclusions of number fields to
their extensions, this inclusion could correspond at quantum level to a
generalized Jones inclusion N ⊂ M such that G acts as automorphisms
of M and leaves invariant the elements of N . This might be possible
if one allows the replacement of complex numbers as coefficient fields of
hyper-finite factors of type II1 with various algebraic extensions of ratio-
nals. Quantum measurement theory with a finite measurement resolution
defined by Jones inclusion N ⊂ M [16] could thus have also a purely
number theoretic meaning provided it is possible to define a non-trivial
action of various Galois groups on configuration space spinor fields via
the imbedding of the configuration space spinors to the space of infinite
integers and rationals (analogous to the imbedding of space-time surface
to imbedding space).

This picture allows to develop rather fascinating ideas about mathematical
structures and their relationship to physical world. For instance, the functional
form of a map between two sets the points of the domain and target rather than
only its value could be coded in a holographic manner by using the number the-
oretic anatomy of the points. Modular functions giving rise to generalized zeta
functions would emerge in especially natural manner in this framework. Config-
uration space spinor fields would allow a physical realization of the holographic
representations of various maps as quantum states.
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8.4 Connection between Hurwitz zetas, quantum groups,
and hierarchy of Planck constants?

The action of modular group SL(2,Z) on Riemann zeta [55] is induced by its
action on theta function [56]. The action of the generator τ → −1/τ on theta
function is essential in providing the functional equation for Riemann Zeta.
Usually the action of the generator τ → τ+1 on Zeta is not considered explicitly.
The surprise was that the action of the generator τ → τ + 1 on Riemann Zeta
does not give back Riemann zeta but a more general function known as Hurwitz
zeta ζ(s, z) for z = 1/2. One finds that Hurwitz zetas for certain rational values
of argument define in a well defined sense representations of fractional modular
group to which quantum group can be assigned naturally. This could allow to
code the value of the quantum phase q = exp(i2π/n) to the solution spectrum
of the modified Dirac operator D. It has later turned out that there is very
natural Zeta function associated with the generalized eigenvalue spectrum of the
modified Dirac operator and since the number of various kinds of zeta functions
is so immense, the hopes that this conjecture would hold true, are meager.
Despite this it is worth to discuss Hurwitz zetas here: one of the reasons is that
one end up with a very nice argument for why the number of observed fermion
families is three.

8.4.1 Hurwitz zetas

Hurwitz zeta is obtained by replacing integers m with m+z in the defining sum
formula for Riemann Zeta:

ζ(s, z) =
∑
m

(m+ z)−s . (90)

Riemann zeta results for z = n.
Hurwitz zeta obeys the following functional equation for rational z = m/n of
the second argument [57]:

ζ(1− s, m
n

) =
2Γ(s)
2πn

s n∑
k=1

cos(
πs

2
− 2πkm

n
)ζ(s,

k

n
) . (91)

The representation of Hurwitz zeta in terms of θ [57] is given by the equation

∫ ∞
0

[θ(z, it)− 1] ts/2
dt

t
= π(1−s)/2Γ(

1− s
2

) [ζ(1− s, z) + ζ(1− s, 1− z)] . (92)

By the periodicity of theta function this gives for z = n Riemann zeta.
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8.4.2 The action of τ → τ + 1 transforms ζ(s, 0) to ζ(s, 1/2)

The action of the transformations τ → τ + 1 on the integral representation of
Riemann Zeta [55] in terms of θ function [56]

θ(z; τ)− 1 = 2
∞∑
n=1

[exp(iπτ)]n
2
cos(2πnz) (93)

is given by

π−s/2Γ(
s

2
)ζ(s) =

∫ ∞
0

[θ(0; it)− 1]ts/2
dt

t
. (94)

Using the first formula one finds that the shift τ = it→ τ +1 in the argument θ
induces the shift θ(0; τ)→ θ(1/2; τ). Hence the result is Hurwitz zeta ζ(s, 1/2).
For τ → τ + 2 one obtains Riemann Zeta.

Thus ζ(s, 0) and ζ(s, 1/2) behave like a doublet under modular transforma-
tions. Under the subgroup of modular group obtained by replacing τ → τ + 1
with τ → τ + 2 Riemann Zeta forms a singlet. The functional equation for
Hurwitz zeta relates ζ(1 − s, 1/2) to ζ(s, 1/2) and ζ(s, 1) = ζ(s, 0) so that also
now one obtains a doublet, which is not surprising since the functional equations
directly reflects the modular transformation properties of theta functions. This
doublet might be the proper object to study instead of singlet if one considers
full modular invariance.

8.4.3 Hurwitz zetas form n-plets closed under the action of fractional
modular group

The inspection of the functional equation for Hurwitz zeta given above demon-
strates that ζ(s,m/n), m = 0, 1, ..., n, form in a well-defined sense an n-plet
under fractional modular transformations obtained by using generators τ →
−1/τ and τ → τ + 2/n. The latter corresponds to the unimodular matrix
(a, b; c, d) = (1, 2/n; 0, 1). These matrices obviously form a group. Note that
Riemann zeta is always one member of the multiplet containing n Hurwitz zetas.

These observations bring in mind fractionization of quantum numbers, quan-
tum groups corresponding to the quantum phase q = exp(i2π/n), and the inclu-
sions for hyper-finite factors of type II1 partially characterized by these quan-
tum phases. Fractional modular group obtained using generator τ → τ + 2/n
and Hurwitz zetas ζ(s, k/n) could very naturally relate to these and related
structures.

8.4.4 Hurwitz zetas and TGD

These observations suggest a direct application to quantum TGD.
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1. In TGD framework inclusions of HFFs of type II1 are directly related to
the hierarchy of Planck constants involving a generalization of the notion
of imbedding space obtained by gluing together copies of 8-D H = M4 ×
CP2 with a discrete bundle structure H → H/Zna

× Znb
together along

the 4-D intersections of the associated base spaces [A9]. A book like
structure results and various levels of dark matter correspond to the pages
of this book. One can say that elementary particles proper are maximally
quantum critical and live in the 4-D intersection of these imbedding spaces
whereas their ”field bodies” reside at the pages of the Big Book. Note
that analogous book like structures results when real and various p-adic
variants of the imbedding space are glued together along common algebraic
points.

2. The integers na and nb give Planck constant as h̄/h̄0 = na/nb, whose
most general value is a rational number. In Platonic spirit one can argue
that number theoretically simple integers involving only powers of 2 and
Fermat primes are favored physically. Phase transitions between different
matters occur at the intersection.

3. The inclusions N ⊂M of HFFs relate also to quantum measurement the-
ory with finite measurement resolution with N defining the measurement
resolution so that N-rays replace complex rays in the projection postulate
and quantum spaceM/N having fractional dimension effectively replaces
M.

4. The basic hypothesis is that the inverses of zeta function or of more gen-
eral variants of zeta coding information about the algebraic structure of
the partonic 2-surface appear in the admittedly speculative fundamental
formula for the generalized eigenvalues of modified Dirac operator D. This
formula is consistent with the generalized eigenvalue equation for D but
is not the only one that one can imagine.

5. The generalized eigen spectrum of D should code information both about
the p-adic prime p characterizing particle and about quantum phases q =
exp(i2π/n) assignable to the particle in M4 and CP2 degrees of freedom. I
understand how p-adic primes appear in the spectrum of D and therefore
how coupling constant evolution emerges at the level of free field theory so
that radiative corrections can vanish without the loss of coupling constant
evolution [C6]. The problem has been to understand how the quantum
phase characterizing the sector of the generalized imbedding space could
make itself visible in these formulas and therefore in quantum dynamics
at the level of free spinor fields. The replacement of Riemann zeta with
an n-plet of Hurwitz zetas would resolve this problem.

6. Geometrically the fractional modular invariance would naturally relate
to the fact that Riemann surface (partonic 2-surface) can be seen as an
na × nb-fold covering of its projection to the base space of H: fractional
modular transformations corresponding to na and nb would relate points
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at different sheets of the covering of M4 and CP2. This suggests that the
fractionization could be a completely general phenomenon happening also
for more general zeta functions.

8.4.5 What about exceptional cases n = 1 and n = 2?

Also n = 1 and n = 2 are present in the hierarchy of Hurwitz zetas (singlet
and doublet). They do not correspond to allowed Jones inclusion since one has
n > 2 for them. What could this mean?

1. It would seem that the fractionization of modular group relates to Jones
inclusions (n > 2) giving rise to fractional statistics. n = 2 corresponding
to the full modular group Sl(2,Z) could relate to the very special role of
2-valued logic, to the degeneracy of n = 2 polygon in plane, to the very
special role played by 2-component spinors playing exceptional role in Rie-
mann geometry with spinor structure, and to the canonical representation
of HFFs of type II1 as fermionic Fock space (spinors in the world of clas-
sical worlds). Note also that SU(2) defines the building block of compact
non-commutative Lie groups and one can obtain Lie-algebra generators
of Lie groups from n copies of SU(2) triplets and posing relations which
distinguish the resulting algebra from a direct sum of SU(2) algebras.

2. Also n = 2-fold coverings M4 → M4/Z2 and CP2 → CP2/Z2 seem to
make sense. One can argue that by quantum classical correspondence
the spin half property of imbedding space spinors should have space-time
correlate. Could n = 2 coverings allow to define the space-time correlates
for particles having half odd integer spin or weak isospin? If so, bosons
would correspond to n = 1 and fermions to n = 2. One could of course
counter argue that induced spinor fields already represent fermions at
space-time level and there is no need for the doubling of the representation.

The trivial group Z1 and Z2 are exceptional since Z1 does not define any
quantization axis and Z2 allows any quantization axis orthogonal to the
line connecting two points. For n ≥ 3 Zn fixes the direction of quantization
axis uniquely. This obviously correlates with n ≥ 3 for Jones inclusions.

8.4.6 Dark elementary particle functionals

One might wonder what might be the dark counterparts of elementary particle
vacuum functionals [F1]. Theta functions θ[a,b](z,Ω) with characteristic [a, b]
for Riemann surface of genus g as functions of z and Teichmueller parameters Ω
are the basic building blocks of modular invariant vacuum functionals defined
in the finite-dimensional moduli space whose points characterize the conformal
equivalence class of the induced metric of the partonic 2-surface. Obviously,
kind of spinorial variants of theta functions are in question with g + g spinor
indices for genus g.

The recent case corresponds to g = 1 Riemann surface (torus) so that a
and b are g = 1-component vectors having values 0 or 1/2 and Hurwitz zeta
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corresponds to θ[0,1/2]. The four Jacobi theta functions listed in Wikipedia [56]
correspond to these thetas for torus. The values for a and b are 0 and 1 for
them but this is a mere convention.

The extensions of modular group to fractional modular groups obtained by
replacing integers with integers shifted by multiples of 1/n suggest the existence
of new kind of q-theta functions with characteristics [a, b] with a and b being
g-component vectors having fractional values k/n, k = 0, 1...n− 1. There exists
also a definition of q-theta functions working for 0 ≤ |q| < 1 but not for roots of
unity [58]. The q-theta functions assigned to roots of unity would be associated
with Riemann surfaces with additional Zn conformal symmetry but not with
generic Riemann surfaces and obtained by simply replacing the value range of
characteristics [a, b] with the new value range in the defining formula

Θ[a, b](z|Ω) =
∑
n

exp [iπ(n+ a) · Ω · (n+ a) + i2π(n+ a) · (z + b)] .

(95)

for theta functions. If Zn conformal symmetry is relevant for the definition of
fractional thetas it is probably so because it would make the generalized theta
functions sections in a bundle with a finite fiber having Zn action.

This hierarchy would correspond to the hierarchy of quantum groups for
roots of unity and Jones inclusions and one could probably define also corre-
sponding zeta function multiplets. These theta functions would be building
blocks of the elementary particle vacuum functionals for dark variants of ele-
mentary particles invariant under fractional modular group. They would also
define a hierarchy of fractal variants of number theoretic functions: it would
be interesting to see what this means from the point of view of Langlands pro-
gram [52] discussed also in TGD framework [E11] involving ordinary modular
invariance in an essential manner.

This hierarchy would correspond to the hierarchy of quantum groups for
roots of unity and Jones inclusions and one could probably define also corre-
sponding zeta function multiplets. These theta functions would be building
blocks of the elementary particle vacuum functionals for dark variants of ele-
mentary particles invariant under fractional modular group.

8.4.7 Dark matter hierarchy and hierarchy of quantum critical sys-
tems in modular degrees of freedom

Dark matter hierarchy corresponds to a hierarchy of conformal symmetries Zn
of partonic 2-surfaces with genus g ≥ 1 such that factors of n define subgroups
of conformal symmetries of Zn. By the decomposition Zn =

∏
p|n Zp, where p|n

tells that p divides n, this hierarchy corresponds to an hierarchy of increasingly
quantum critical systems in modular degrees of freedom. For a given prime p
one has a sub-hierarchy Zp, Zp2 = Zp×Zp, etc... such that the moduli at n+1:th
level are contained by n:th level. In the similar manner the moduli of Zn are
sub-moduli for each prime factor of n. This mapping of integers to quantum
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critical systems conforms nicely with the general vision that biological evolution
corresponds to the increase of quantum criticality as Planck constant increases.

The group of conformal symmetries could be also non-commutative discrete
group having Zn as a subgroup. This inspires a very short-lived conjecture that
only the discrete subgroups of SU(2) allowed by Jones inclusions are possible as
conformal symmetries of Riemann surfaces having g ≥ 1. Besides Zn one could
have tedrahedral and icosahedral groups plus cyclic group Z2n with reflection
added but not Z2n+1 nor the symmetry group of cube. The conjecture is wrong.
Consider the orbit of the subgroup of rotational group on standard sphere of
E3, put a handle at one of the orbits such that it is invariant under rotations
around the axis going through the point, and apply the elements of subgroup.
You obtain a Riemann surface having the subgroup as its isometries. Hence all
discrete subgroups of SU(2) can act even as isometries for some value of g.

The number theoretically simple ruler-and-compass integers having as fac-
tors only first powers of Fermat primes and power of 2 would define a physically
preferred sub-hierarchy of quantum criticality for which subsequent levels would
correspond to powers of 2: a connection with p-adic length scale hypothesis sug-
gests itself.

Spherical topology is exceptional since in this case the space of conformal
moduli is trivial and conformal symmetries correspond to the entire SL(2, C).
This would suggest that only the fermions of lowest generation corresponding
to the spherical topology are maximally quantum critical. This brings in mind
Jones inclusions for which the defining subgroup equals to SU(2) and Jones
index equals toM/N = 4. In this case all discrete subgroups of SU(2) label the
inclusions. These inclusions would correspond to fiber space CP2 → CP2/U(2)
consisting of geodesic spheres of CP2. In this case the discrete subgroup might
correspond to a selection of a subgroup of SU(2) ⊂ SU(3) acting non-trivially
on the geodesic sphere. Cosmic strings X2 × Y 2 ⊂ M4 × CP2 having geodesic
spheres of CP2 as their ends could correspond to this phase dominating the very
early cosmology.

8.4.8 Fermions in TGD Universe allow only three families

What is nice that if fermions correspond to n = 2 dark matter with Z2 conformal
symmetry as strong quantum classical correspondence suggests, the number of
ordinary fermion families is three without any further assumptions. To see
this suppose that also the sectors corresponding to M4 → M4/Z2 and CP2 →
CP2/Z2 coverings are possible. Z2 conformal symmetry implies that partonic
Riemann surfaces are hyper-elliptic. For genera g > 2 this means that some
theta functions of θ[a,b] appearing in the product of theta functions defining
the vacuum functional vanish. Hence fermionic elementary particle vacuum
functionals would vanish for g > 2 and only 3 fermion families would be possible
for n = 2 dark matter.

This results can be strengthened. The existence of space-time correlate
for the fermionic 2-valuedness suggests that fermions quite generally to even
values of n, so that this result would hold for all fermions. Elementary bosons
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(actually exotic particles belonging to Kac-Moody type representations) would
correspond to odd values of n, and could possess also higher families. There is
a nice argument supporting this hypothesis. n-fold discretization provided by
covering associated with H corresponds to discretization for angular momentum
eigen states. Minimal discretization for 2j+ 1 states corresponds to n = 2j+ 1.
j = 1/2 requires n = 2 at least, j = 1 requires n = 3 at least, and so on.
n = 2j + 1 allows spins j ≤ n − 1/2. This spin-quantum phase connection
at the level of space-time correlates has counterpart for the representations of
quantum SU(2).

These rules would hold only for genuinely elementary particles corresponding
to single partonic component and all bosonic particles of this kind are exotics
(excitations in only ”vibrational” degrees of freedom of partonic 2-surface with
modular invariance eliminating quite a number of them): ordinary gauge bosons
correspond to fermion pairs at throats of a wormhole contact and decompose
to SU(3) singlet and octet, whose states are labelled by handle-number pairs
(g1, g2): they define new kind of heavy bosons giving rise to neutral flavor chang-
ing currents (could they be visible in LHC?). Note that gravitons necessarily
correspond to pairs of fermions or gauge bosons connected by flux tubes so that
they are stringy objects in this sense.
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